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Abstract. The n-strand braid group can be defined as the fundamen-
tal group of the configuration space of n unlabeled points in a closed
disk based at a configuration where all n points lie in the boundary of
the disk. Using this definition, the subset of braids that have a repre-
sentative where a specified subset of these points remain pointwise fixed
forms a subgroup isomorphic to a braid group with fewer strands. In
this article, we generalize this phenomenon by introducing the notion of
boundary braids. A boundary braid is a braid that has a representative
where some specified subset of the points remains in the boundary cy-
cle of the disk. Although boundary braids merely form a subgroupoid
rather than a subgroup, they play an interesting geometric role in the
piecewise Euclidean dual braid complex defined by Tom Brady and the
second author. We prove several theorems in this setting, including the
fact that the subcomplex of the dual braid complex determined by a
specified set of boundary braids metrically splits as the direct metric
product of a Euclidean polyhedron and a dual braid complex of smaller
rank.

Braids and braid groups play an important role throughout mathematics,
in part because of the multiple ways in which they can be described. In
this article we view the n-strand braid group Braidn as the fundamental
group of the unordered configuration space of n distinct points in the closed
unit disk D, based at an initial configuration P where all n points lie in
the boundary of D. Requiring the points indexed by B Ď t1, . . . , nu to
remain fixed defines a parabolic subgroup FixnpBq which is isomorphic to
Braidn´|B|.

We introduce an extension of this idea. A pB, ¨q-boundary braid is a
braid that has a representative where the points indexed by B remain in
the boundary of the disk but need not be fixed (see Definition 2.13). Our
first main result is that the subgroup FixnpBq has a canonical complement
MovenpB, ¨q in the set BraidnpB, ¨q of pB, ¨q-boundary braids that gives
rise to a unique decomposition (see Section 13):

Theorem A. Let B Ď t1, . . . , nu and let β be a pB, ¨q-boundary braid in
Braidn. Then there are unique braids FixBpβq in FixnpBq and MoveBpβq
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in MovenpB, ¨q such that

β “ FixBpβqMoveBpβq.

We call the elements of FixnpBq fix braids and the elements of MovenpB, ¨q
move braids.

Associated to the braid group Braidn is the dual braid complex, intro-
duced by Tom Brady [Bra01] and denoted CplxpBraidnq. It is a con-
tractible simplicial complex on which Braidn acts freely and cocompactly.
Brady and the second author equipped CplxpBraidnq with a piecewise Eu-
clidean orthoscheme metric and conjectured that it is CATp0q with respect
to this metric [BM10]. They verified the conjecture for n ă 6 and Haet-
tel, Kielak and Schwer proved it for n “ 6 [HKS16]. We are interested
in boundary braids as an approach to proving the conjecture. The sets of
boundary braids, fix braids, and move braids have induced subcomplexes in
CplxpBraidnq with the following metric decomposition.

Theorem B. Let B Ď t1, . . . , nu. The complex of pB, ¨q-boundary braids
decomposes as a metric direct product

CplxpBraidnpB, ¨qq – CplxpFixnpBqq ˆCplxpMovenpB, ¨qq.

The complex CplxpMovenpB, ¨qq is R times a Euclidean simplex and there-
fore CATp0q. In particular, CplxpBraidnpB, ¨qq is CATp0q if and only
if the smaller dual braid complex CplxpFixnpBqq – CplxpBraidn´|B|q is
CATp0q.

As part of our proof for Theorem B, we introduce a new type of configuration
space for directed graphs and the broader setting of ∆-complexes. We refer
to these as orthoscheme configuration spaces and explore their geometry for
the case of oriented n-cycles. The other key element for proving Theorem B
is a combinatorial study of noncrossing partitions associated to boundary
braids.

Because the points indexed by B do not necessarily return to their original
positions, either pointwise or as a set, boundary braids form a subgroupoid
rather than a subgroup. More precisely, if we refer to a boundary braid
where the points indexed by B move in the boundary to end at points
indexed by B1, then we see that a pB,B1q-boundary braid can be com-
posed with a pB1, B2q-boundary braid to produce a pB,B2q-boundary braid.
The groupoid Braidnp¨, ¨q of boundary braids has subgroupoids Fixnp¨q and
Movenp¨, ¨q consisting of fix braids and move braids respectively. We prove
the following algebraic result (see Section 14).

Theorem C. The groupoid of boundary braids decomposes as a semidirect
product

Braidnp¨, ¨q – Fixnp¨q ¸Movenp¨, ¨q.

The article is organized as follows. The first part, Sections 1 through 4,
develops standard material about braid groups and their dual Garside struc-
ture in a way that suits our later applications. The second part, Sections 5
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through 8, is concerned with complexes of ordered simplices. Specifically we
show how to equip them with an orthoscheme metric and that a combina-
torial direct product gives rise to a metric direct product. The final part,
Sections 9 through 14, contains our work on boundary braids and the proofs
of the main theorems.

Part 1. Braids

Braids can be described in a variety of ways. In this part we establish
the conventions used throughout the article, review basic facts about dual
simple braids and the dual presentation for the braid group, and introduce
the concept of a boundary braid.

1. Braid Groups

In this article, braid groups are viewed as fundamental groups of certain
configuration spaces.

Definition 1.1 (Configuration spaces). Let X be a topological space, let n
be a positive integer and let Xn denote the product of n copies of X whose
elements are n-tuples ~x “ px1, x2, . . . , xnq of elements xi P X. Alternatively,
the elements of Xn can be thought of as functions from rns to X where
rns is the set t1, 2, . . . , nu. The configuration space of n labeled points in X
is the subspace ConfnpXq of Xn of n-tuples with distinct entries, i.e. the
subspace of injective functions. The thick diagonal of Xn is the subspace
DiagnpXq “ tpx1, . . . , xnq | xi “ xj for some i ‰ ju where this condition
fails. Thus ConfnpXq “ Xn ´ DiagnpXq. The symmetric group acts
on Xn by permuting coordinates and this action restricts to a free action
on ConfnpXq. The configuration space of n unlabeled points in X is the
quotient space UConfnpXq “ pX

n´DiagnpXqq{Symn. Since the quotient
map sends the n-tuple px1, . . . , xnq to the n-element set tx1, . . . , xnu, we
write set : ConfnpXq Ñ UConfnpXq for this natural quotient map.

Since the topology of a configuration space only depends on the topology of
the original space, the following lemma is immediate.

Lemma 1.2 (Homeomorphisms). A homeomorphism X Ñ Y induces a
homeomorphism h : UConfnpXq Ñ UConfnpY q. In particular, for any
choice of basepoint ˚ in UConfnpXq, there is an induced isomorphism
π1pUConfnpXq, ˚q – π1pUConfnpY q, hp˚qq.

Example 1.3 (Configuration spaces). When X is the unit circle and n “
2, the space X2 is a torus, Diag2pXq is a p1, 1q-curve on the torus, its
complement Conf2pXq is homeomorphic to the interior of an annulus and
the quotient UConf2pXq is homeomorphic to the interior of a Möbius band.
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Definition 1.4 (Braids in C). Let C be the complex numbers with its
usual topology and let ~z “ pz1, z2, . . . , znq denote a point in Cn. The thick
diagonal of Cn is a union of hyperplanes Hij , with i ă j P rns, called the
braid arrangement, where Hij is the hyperplane defined by the equation
zi “ zj . The configuration space ConfnpCq is the complement of the braid
arrangement and its fundamental group is called the n-strand pure braid
group. The n-strand braid group is the fundamental group of the quotient
configuration space UConfnpCq “ ConfnpCq{Symn of n unlabeled points.
In symbols

PBraidn “ π1pConfnpCq, ~zq and Braidn “ π1pUConfnpCq, Zq

where ~z is some specified basepoint in ConfnpCq and Z “ setp~zq is the
corresponding basepoint in UConfnpCq.

Remark 1.5 (Short exact sequence). The quotient map set is a cover-
ing map, so the induced map set˚ : PBraidn Ñ Braidn on fundamental
groups is injective. In fact, ConfnpCq is a regular cover of UConfnpCq,
so the subgroup set˚pPBraidnq Ă Braidn is a normal subgroup and the
quotient group Braidn{set˚pPBraidnq is isomorphic to the group Symn
of covering transformations. The quotient map sends each braid to the per-
mutation it induces on the n-element set used as the basepoint of Braidn,
a map we define more precisely in the next section. We call this map perm.
These maps form a short exact sequence

(1.1) PBraidn
set˚
ãÑ Braidn

perm
� Symn.

Example 1.6 (n ď 2). When n “ 1 the spaces UConf1pCq, Conf1pCq
and C are equal and contractible, and all three groups in Equation 1.1 are
trivial. When n “ 2 the space Conf2pCq is C2 minus a copy of C1, which
retracts first to C1 ´ C0 and then to the circle S1 of unit length complex
numbers. The quotient space UConf2pCq also deformation retracts to S1

and the map from Conf2pCq to UConf2pCq corresponds to the map from
S1 to itself sending z to z2. In particular PBraid2 – Braid2 – Z and set˚
is the map that multiplies by 2 with quotient Z{2Z – Sym2.

Convention 1.7 (n ą 2). For the remainder of the article, we assume that
the integer n is greater than 2, unless we explicitly state otherwise.

Let D Ă C be the closed unit disk centered at the origin. Restricting to
configurations of points that remain in D does not change the fundamental
group of the configuration space.

Proposition 1.8 (Braids in D). The configuration space UConfnpCq defor-
mation retracts to the subspace UConfnpDq, so for any choice of basepoint
Z in the subspace, π1pUConfnpDq, Zq “ π1pUConfnpCq, Zq “ Braidn.
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Figure 1. The figure on the left shows the standard base-
point P “ tp1, p2, . . . , p9u and the standard disk D for n “ 9.
The figure on the right shows the standard subdisks DA for
A equal to t1, 2, 6, 9u, t3, 5u and t7, 8u.

Proof. Let mp~zq “ maxt1, |z1|, . . . , |zn|u for each ~z “ pz1, . . . , znq P Cn and
note that m defines a continuous map from ConfnpCq to Rě1. The straight-
line homotopy from the identity map on ConfnpCq to the map that sends ~z
to 1

mp~zq~z is a deformation retraction from ConfnpCq to ConfnpDq and since

mp~zq only depends on the entries of ~z and not their order, this deformation
retraction descends to one from UConfnpCq to UConfnpDq. �

The following result combines Lemma 1.2 and Proposition 1.8.

Corollary 1.9 (Braids in D). A homeomorphism DÑ D induces a home-
omorphism of configuration spaces h : UConfnpDq Ñ UConfnpDq. In par-
ticular, for any choice of basepoint Z in UConfnpDq, there is an induced
isomorphism π1pUConfnpDq, Zq – π1pUConfnpDq, hpZqq “ Braidn.

Remark 1.10 (Points in BD). When Braidn is viewed as the mapping
class group of an n-times punctured disk, the punctures are not allowed to
move into the boundary of the disk since doing so would alter the topological
type of the punctured space. When Braidn is viewed as the fundamental
group of a configuration space of points in a closed disk, points are allowed
in the boundary and we make extensive use of this extra flexibility.

We have a preferred choice of basepoint and disk for Braidn.

Definition 1.11 (Basepoints and disks). Let ζ “ e2πi{n P C be the standard
primitive n-th root of unity and let pi be the point ζi for all i P Z. Since
ζn “ 1, the subscript i should be interpreted as an integer representing
the equivalence class i ` nZ P Z{nZ. In particular, we consider pi´n “
pi “ pi`n “ pi`2n without further comment. The standard basepoint for
PBraidn is the n-tuple ~p “ pp1, p2, . . . , pnq and the standard basepoint for
Braidn is the n-element set P “ setp~pq “ tp1, p2, . . . , pnu of all n-th roots of
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unity. Let D be the convex hull of the points in P . Our standing assumption
of n ą 2 means that D is homeomorphic to the disk D. We call D the
standard disk for Braidn. See Figure 1.

Remark 1.12 (Braid groups). By Corollary 1.9, the braid group Braidn
is isomorphic to π1pUConfnpDq, P q, the fundamental group of the config-
uration space of n unlabeled points in the standard disk D based at the
standard basepoint P . In the remainder of the article, we use the notation
Braidn to refer to the specific group π1pUConfnpDq, P q.

2. Individual Braids

This section establishes our conventions for describing individual braids and
we introduce the concept of a boundary braid.

Definition 2.1 (Representatives). Each braid α P Braidn is a basepoint-
preserving homotopy class of a path f : r0, 1s Ñ UConfnpD,P q that de-
scribes a loop based at the standard basepoint P . We write α “ rf s and say
that the loop f represents α. We use Greek letters such as α, β and δ for
braids and Roman letters such as f , g and h for their representatives.

Vertical drawings of braids in R3 typically have the t “ 0 start at the top
and the t “ 1 end at the bottom. See Definition 2.3 for the details. As a
mnemonic, we use superscripts for information about the start of a braid or
a path and subscripts for information about its end.

Definition 2.2 (Strands). Let α P Braidn be a braid with representative
f . A strand of f is a path in D that follows what happens to one of the
vertices in P . There are two natural ways to name strands: by where
they start and by where they end. The strand that starts at pi is the path

f i : r0, 1s Ñ D defined by the composition f i “ proji˝ rf
~p, where the map rf ~p

is the unique lift of the path f through the covering map set : ConfnpDq Ñ

UConfnpDq so that the lifted path starts at ~p, i.e. rf ~pp0q “ ~p, and proji :
ConfnpDq Ñ D is projection onto the i-th coordinate. Similarly the strand
that ends at pj is the path fj : r0, 1s Ñ D defined by the composition fj “

projj ˝ rf~p where rf~p is the unique lift of the path f through the covering map

set : ConfnpDq Ñ UConfnpDq that ends at ~p, i.e. rf~pp1q “ ~p. When the

strand of f that starts at pi ends at pj the path f i is the same as the path
fj . We write f i, fj or f ij for this path and we call it the pi, ¨q-strand, the

p¨, jq-strand or the pi, jq-strand of f depending on the information specified.

A braid representative is drawn by superimposing the graphs of its strands.

Definition 2.3 (Drawings). Let α P Braidn be a braid with representative
f . A drawing of f is formed by superimposing the graphs of its strands inside
the polygonal prism r0, 1s ˆD. There are two distinct conventional embed-
dings of this prism into R3. The complex plane containing D is identified
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with either the first two or the last two coordinates of R3 and the remaining
coordinate indicates the value t P r0, 1s with the t-dependence arranged so
that the t “ 0 start of f is on the left or at the top and the t “ 1 end of f is on
the right or at the bottom. In the left-to-right orientation, for each j P rns,
for each t0 P r0, 1s and for each point fjpt0q “ z0 “ x0 ` iy0 P D Ă C on the
p¨, jq-strand we draw the point pt0, x0, y0q P R3. In the top-to-bottom orien-
tation, the same point on the p¨, jq-strand is drawn at px0, y0, 1´ t0q P R3.

Definition 2.4 (Multiplication). Let α1 and α2 be braids in Braidn with
representatives f1 and f2. The product α1 ¨α2 is defined to be rf1.f2s where
f1.f2 is the concatenation of f1 and f2. In the drawing of f1.f2 the drawing
of f1 is on the top or left of the drawing of f2 which is on the bottom or
right. See Figure 2.

Definition 2.5 (Permutations). A permutation of the set rns is a bijective
correspondence between a left/top copy of rns and a right/bottom copy of
rns. Permutations are compactly described in disjoint cycle notation. A
cycle such as p1 2 3q, for example, means that 1 on the left corresponds to
2 on the right, 2 on the left corresponds to 3 on the right, and 3 on the left
corresponds to 1 on the right. Multiplication of permutations is performed
by concatenating the correspondences left-to-right or top-to-bottom. The
permutation τ of rns acts on rns from either the left or the right by following
the correspondence: if i on the left corresponds to j on the right, then i¨τ “ j
and i “ τ ¨ j.

Definition 2.6 (Permutation of a braid). The permutation of a braid α is
the bijective correspondence of rns under which i on the left corresponds
to j on the right if α has an pi, jq-strand. Note that the function permpαq
only depends on the braid α and not on the representative f . The direction
of the bijection permpαq is defined so that it is compatible with function
composition, i.e. so that permpα1 ¨ α2q “ permpα1q ˝ permpα2q.

Information about how a braid permutes its strands can be be used to
distinguish different types of braids.

Definition 2.7 (pi, jq-braids). Let α P Braidn be a braid with permutation
g “ permpαq. We say that α is an pi, jq-braid if the strand that starts at pi
ends at pj . In other words, α is an pi, jq-braid if and only if gpjq “ i. When
α is an pi, jq-braid and β is a pj, kq-braid, γ “ α ¨ β is a pi, kq-braid and the
inverse of α is a pj, iq-braid.

For our applications, we make use of a generating set for the braid group
which is built out of braids we call rotation braids. Rotation braids are
defined using special subsets of our standard basepoint P and subspaces of
our standard disk D.

Definition 2.8 (Subsets of P ). For each non-empty A Ă rns of size k,
we define PA “ tpi | i P Au Ă P to be the subset of points indexed by the
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numbers in A. In this notation our original set P is Prns. Using this notation
we can extend the notion of an pi, jq-braid. Let A and B be two subsets
of rns of the same size and let α P Braidn be a braid with permutation
g “ permpαq. We say that α is an pA,Bq-braid if every strand that starts
in PA, ends in PB, i.e. if and only if gpBq “ A.

Definition 2.9 (Subdisks of D). For all distinct i, j P rns let the edge eij
be the straight line segment connecting pi and pj . For k ą 2, let DA be
ConvpPAq, the convex hull of the points in PA and note that DA is a k-gon
homeomorphic to D. We call this the standard subdisk for A Ă rns. In this
notation, our original disk D is Drns. For k “ 2 and A “ ti, ju, we define
DA so that it is also a topological disk. Concretely, we take two copies of
the path along the edge e “ eij from pi to pj and then bend one or both of
these copies so that they become injective paths from pi to pj with disjoint
interiors which together bound a bigon inside of D. Moreover, when the
edge e lies in the boundary of D we require that one of the two paths does
not move so that e itself is part of the boundary of the bigon. See Figure 1.
For k “ 1, we define DA to be the single point pi P PA, but note that this
subspace is not a subdisk. The bending of the edges to form the bigons
are chosen to be slight enough so that for all A and B Ď rns the standard
disks DA and DB intersect if and only if the convex hulls ConvpPAq and
ConvpPBq intersect.

We view the boundaries of these subdisks as directed graphs.

Definition 2.10 (Boundary edges). When A has more than 1 element,
we view BDA, the topological boundary of the subdisk DA, as having the
structure of a directed graph. The vertex set is PA and for every vertex pi in
PA there is a directed edge that starts pi, proceeds along BDA in a counter-
clockwise direction with respect to the interior of DA, and ends at the next
vertex in PA that it encounters. The edges of the graph BDA are called the
boundary edges of DA. Note that edges and boundary edges are distinct
concepts. An edge is unoriented and necessarily straight. A boundary edge
is directed, it belong to the boundary of a specific subdisk DA and the path
it describes might curve.

Definition 2.11 (Rotation braids). For A Ă rns of size k “ |A| ą 1 we
define an element δA P Braidn that we call the rotation braid of the vertices
in PA. It is the braid represented by the path in UConfnpDq that fixes
the vertices in P ´ PA and where every vertex pi P PA travels in a counter-
clockwise direction along the oriented edge in the directed graph BDA to
the next vertex it encounters. If f is any representative of δA satisfying this
description, we call f a standard representative of δA.

When A “ rns we write δ instead of δrns and when A has only a single
element we let δA denote the identity element in Braidn. If A “ ti, ju and
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v1v2

v3

v4 v5

v6 “ v0

α2 “ δt2,3,4,5u

α1 “ δt1,5,6u

t “ 1

t “ 0

Figure 2. A drawing of α1 ¨α2 where α1 “ δA1 and α2 “ δA2

are rotations with A1 “ t1, 5, 6u and A2 “ t2, 3, 4, 5u.

e “ eij is the edge connecting pi and pj , then we sometimes write δe to mean
δA, the rotation of pi and pj around the boundary of the bigon DA. Note
that if A “ ti1, i2, . . . , iku Ă rns and i1 ă i2 ă ¨ ¨ ¨ ă ik is the natural linear
order of its elements, then the bijection permpδAq is equal to the k-cycle
pi1, i2, . . . , ikq.

Example 2.12 (Rotation braids). Figure 2 shows a drawing of the product
of two rotation braids in Braid9. The top braid α1 is the rotation δA1 with
A1 “ t1, 5, 6u and permpα1q “ p1 5 6q. The bottom braid α2 is the rotation
braid δA2 with A2 “ t2, 3, 4, 5u and permpα2q “ p2 3 4 5q. The product
braid α “ α1 ¨ α2 is the rotation braid δ of all 6 vertices with permpαq “
permpα1 ¨ α2q “ permpα1q ˝ permpα2q “ p1 5 6qp2 3 4 5q “ p1 2 3 4 5 6q.

In this article, we focus on whether or not particular strands pass through
the interior of the polygonal disk D. Those that remain in the boundary of
D are called boundary strands.

Definition 2.13 (Boundary braids). Let f be a representative of an pi, jq-
braid α P Braidn. If the pi, jq-strand of f remains in the boundary BD,
then it is a boundary strand of f and a boundary parallel strand of α. The
linguistic shift from “boundary” to “boundary parallel” reflects the fact that
while for many representatives of α, the pi, jq-strand will not remain in the
boundary, it will always remain parallel to the boundary in a sense that can
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be made precise. When α has some representative in which its pi, jq-strand
is a boundary strand, α is called a pi, jq-boundary braid. More generally,
suppose α is an pB,Cq-braid and there is a representative f of α so that
every strand that starts in PB is a boundary strand of f . We then call α an
pB,Cq-boundary braid.

Note that the definition of an pB,Cq-boundary braid requires a single repre-
sentative where all of these strands remain in BD. We will see in Section 11
that such a representative exists as soon as there are representatives which
keep the pi, ¨q-strand in the boundary for each i P B.

Example 2.14 (Boundary braids). In Figure 2 the rotation braid α2 “

δA2 P Braid6 with A2 “ t2, 3, 4, 5u is an pA2, A2q-braid but it is not an
pA2, A2q-boundary braid since the p5, 2q-strand passes through the interior
of D. It is, however, a pB,Cq-boundary braid with B “ t1, 2, 3, 4, 6u and
C “ t1, 3, 4, 5, 6u since all five of the corresponding strands, i.e. the p1, 1q,
p2, 3q, p3, 4q, p4, 5q and p6, 6q strands, remain in the boundary of D in its
standard representative.

3. Dual Simple Braids

This section defines dual simple braids and the dual presentation of the braid
group using the rotation braids from the previous section. We begin with the
combinatorics of the noncrossing partition lattice. Recall that P “ Prns Ă C
denotes the set of n-th roots of unity.

Definition 3.1 (Noncrossing partitions). A partition π “ tA1, . . . , Aku of
the set rns is noncrossing when the convex hulls ConvpPA1q, . . . ,ConvpPAkq
of the corresponding sets of points in P are pairwise disjoint. A partition
is irreducible if it has exactly one block with more than one element. Since
there is an obvious bijection between irreducible partitions and subsets of
rns of size at least 2, we write πA to indicate the irreducible partition whose
unique non-singleton block is A.

Definition 3.2 (Noncrossing partition lattice). Let π and π1 be noncrossing
partitions of rns. If each block of π is contained in some block of π1, then π
is called a refinement of π1 and we write π ď π1. The set of all noncrossing
partitions of rns under the refinement partial order has well defined meets
and joins and is called the lattice of noncrossing partitions NCn.

The Hasse diagram for NC4 is shown in Figure 3. The noncrossing partition
lattice has a maximum partition with only one block and a minimum par-
tition, also called the discrete partition, where each block contains a single
element. We write NC˚n for the poset of non-trivial noncrossing partitions,
i.e. NCn with the discrete partition removed.

Definition 3.3 (Rank function). The noncrossing partition lattice NCn is
a graded poset with a rank function. The rank of the noncrossing partition
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Figure 3. The noncrossing partition lattice NC4

π “ tA1, A2, . . . , Aku is rkpπq “ n´k. In particular, the rank of the discrete
partition is 0, the rank of the maximum partition is n ´ 1 and the rank of
the irreducible partition πA is |A|´ 1.

For more about noncrossing partitions, see [McC06, Arm09, Sta12]. Using
the rotation braids defined in Definition 2.11, there is a natural map from
noncrossing partitions to braids.

Definition 3.4 (Dual simple braids). Let π “ tA1, . . . , Aku P NCn be a
noncrossing partition. The dual simple braid δπ is defined to be the product
of the rotation braids δA1 ¨ ¨ ¨ δAk and since the rotation braid of a singleton
set is the trivial braid, the product only needs to be taken over the blocks of
size at least 2. Moreover, because the standard subdisks DAi are pairwise
disjoint, the rotation braids δAi pairwise commute and the order in which
they are multiplied is irrelevant. Finally note that for each A Ď rns of size
at least 2, the irreducible partition πA corresponds to the rotation braid δA.
In accordance with notation for noncrossing partitions we denote by DSn :“
tδπ | π P NCnu the set of dual simple braids and by DS˚n :“ tδπ | π P NC˚nu
the set of non-trivial dual simple braids. We equip both sets with the order
coming from NCn.

Taking the transitive closure gives a partial order on all of Braidn. It has
the following property:
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Symn Braidn

Ď Ď

NCn – NPn – DSn
(noncrossing
partitions)

(noncrossing
permutations)

(dual simple
braids)

Table 1. The names of noncrossing partitions as subsets of
the symmetric group and the braid group.

Proposition 3.5. The partial order ď on Braidn is a left-invariant lattice
order. The set DSn is the interval r1, δs with respect to this order. In par-
ticular, if σ, τ P NCn then σ ď τ if and only if δσ

´1δτ is a dual simple braid
if and only if δτδσ

´1 is a dual simple braid.

Proof. This can be seen from [BKL98] but it is easier to reference from
[Bra01]. Our dual simple braids are “(braids corresponding to) allowable
elements” in [Bra01]. That the order on DSn is left-divisibility follows from
[Bra01, Lemma 3.10]. Consequently taking the transitive closure is the same
as taking an element to be ě 1 if and only if it is generated by dual simple
braids. That this defines a left-invariant partial order follows from [Bra01,
Lemma 5.6]. That DSn is the interval r1, δs follows from the injectivity
statement [Bra01, Theorem 5.7]. �

There is a third poset, isomorphic to both NCn and DSn, which provides
another useful perspective on the combinatorics of noncrossing partitions.

Definition 3.6 (Noncrossing Permutations). As described in Definition 3.4,
the poset of dual simple braids is obtained via an injection of NCn into
Braidn. The composition of this injection with the perm map is also injec-
tive and we refer to the image of the composition NCn ãÑ Symn as the set of
noncrossing permutations, denoted NPn. Refer to the noncrossing permu-
tation corresponding to π P NCn as σπ. With the partial order induced by
the noncrossing partition lattice, NPn is isomorphic to both DSn and NCn.

To help the reader keep track of the notation adherent to NCn and its
counterparts within Braidn and Symn we provide a dictionary in Table 1.

The following proposition records standard facts about factorizations of
dual simple braids into dual simple braids.

Proposition 3.7 (Relations). If π, π1 P NCn are noncrossing partitions with
π ď π1, then there exist unique π1, π2 P NCn such that δπ1δπ “ δπδπ2 “ δπ1
in Braidn. Conversely, if π1, π2, π3 P NCn are noncrossing partitions such
that δπ1δπ2 “ δπ3 in Braidn, then π1 ď π3, π2 ď π3 and π3 is the join of π1

and π2 in NCn.

Proof. Follows from Theorem 3.7, Lemma 3.9, and Theorem 4.8 of [Bra01].
�
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Figure 4. The noncrossing partition π with blocks A1 “

t1, 2, 6, 9u, A2 “ t3, 5u, A3 “ t4u and A4 “ t7, 8u on the left
corresponds to the braid δπ “ δA1δA2δA4 on the right.

These relations are used to define the dual presentation of the braid group.

Definition 3.8 (Dual presentation). Let S “ tsπ | π P NC˚nu be a set
indexed by the non-trivial noncrossing partitions and let R be the set of
relations of the form sπ1sπ2 “ sπ3 where such a relation is in R if and only
if δπ1δπ2 “ δπ3 holds in Braidn. The finite presentation x S | R y is called
the dual presentation of the n-strand braid group.

The name reflects the following fact established by Tom Brady in [Bra01].

Theorem 3.9 (Dual presentation). The abstract group G defined by the dual
presentation of the n-strand braid group is isomorphic to the n-strand braid
group. Concretely, the function that sends sπ P S to the dual simple braid
δπ P Braidn extends to a group isomorphism between G and Braidn. �

4. Parabolic Subgroups

This section establishes properties of subgroups of Braidn indexed by non-
crossing partitions of rns. We begin by showing that two different configu-
ration spaces have isomorphic fundamental groups.

Lemma 4.1 (Isomorphic groups). For a subset A Ă rns of size k, let B “
rns´A and DB “ D´PB. The natural inclusion map DA ãÑ DB extends to
an inclusion map h : UConfkpDAq ãÑ UConfkpD

Bq and the induced map
h˚ : π1pUConfkpDAq, PAq Ñ π1pUConfkpD

Bq, PAq is an isomorphism.

Proof. When k “ 1 both groups are trivial and there is nothing to prove.
For each element rf s in π1pUConfkpD

Bq, PAq, the path f can be homotoped
so that it never leaves the subdisk DA. One can, for example, modify f so
that the configurations first radially shrink towards a point in the interior
of DA, followed by the original representative f on a rescaled version of DB

strictly contained in DA, followed by a radial expansion back to the starting
position. This shows that h˚ is onto. Suppose rf s and rgs are elements in
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π1pUConfkpDAq, PAq such that f and g are homotopic based paths in the
bigger space UConfkpD

Bq. A very similar modification that can be done
here so that the entire homotopy between f and g takes place inside the
subdisk DA, and this shows that h˚ is injective. �

We are interested in the images of these isomorphic groups inside the n-
strand braid group.

Definition 4.2 (Subgroups). Let A be a nonempty subset of rns of size k,
let B “ rns´A and let DB “ D´PB. For each such A, we define a map from
Braidk to Braidn whose image is a subgroup we call BraidA. When k “ 1,
Braidk is trivial, the only possible map is the trivial map and BraidA is
the trivial subgroup of Braidn. For k ą 1, the subspace DA is a disk,
by Corollary 1.9 the group π1pUConfkpDAq, PAq is isomorphic to Braidk,
and by Lemma 4.1 π1pUConfkpD

Bq, PAq is also isomorphic to Braidk. Let
g : UConfkpD

Bq ãÑ UConfnpP q be the natural embedding that sends a
set U P UConfkpD

Bq to gpUq “ U Y PB P UConfnpP q and note that
gpPAq “ P . The group BraidA is the subgroup g˚pπ1pUConfkpD

Bq, PAqq.

Note that for every A Ă rns, the rotation braid δA is an element of the
subgroup BraidA. We are also interested in the braids that fix a subset of
vertices in V .

Definition 4.3 (Fixing vertices). Let α be a braid in Braidn represented
by f . We say that f fixes the vertex pi P P if the strand that starts at pi is
a constant path, i.e. f iptq “ pi for all t P r0, 1s. Similarly, f fixes PB Ă P if
it fixes each pi P PB and a braid α fixes PB if it has some representative f
that fixes PB. Let FixnpBq “ tα P Braidn | α fixes PBu. Since the special
representatives can be concatenated and inverted while remaining special,
FixnpBq is a subgroup of Braidn.

The two constructions describe the same set of subgroups.

Lemma 4.4 (FixnpBq “ BraidA). If A and B are nonempty sets that par-
tition rns, then the fixed subgroup FixnpBq is equal to the subgroup BraidA.

Proof. The map g described in Definition 4.2 shows that every braid in
BraidA has a representative that fixes PB. Thus BraidA Ă FixnpBq.
Conversely, let α be a braid in FixnpBq and let f be a representative of α
that fixes PB. Since the vertices in PB are always occupied, f restricted to
the strands that start in PA is a loop in the space UConfkpD

Bq. Thus α
is in the subgroup g˚pπ1pUConfkpD

Bq, PAqq “ BraidA, which means that
FixnpBq Ă BraidA and the two groups are equal. �

The subgroups of the form BraidA “ FixnpBq are used to construct the
dual parabolic subgroups of Braidn.

Definition 4.5 (Dual parabolic subgroups). Let π “ tA1, A2, . . . , Aku P
NCn be a noncrossing partition. We define the subgroup Braidπ Ă Braidn
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to be the internal direct product Braidπ “ BraidA1ˆ. . .ˆBraidAk . These
are pairwise commuting subgroups that intersect trivially because they are
moving points around in disjoint standard subdisks DAi . We call Braidπ
a dual parabolic subgroup. The subgroup BraidA is an irreducible dual
parabolic because it corresponds to the irreducible noncrossing partition πA.
And when A “ rns´tiu we call BraidA a maximal irreducible dual parabolic.

The adjective “dual” is used to distinguish them from the standard parabolic
subgroups associated with the standard presentation of Braidn, but the two
collections of subgroups are closely related. To make the connection between
them precise, we pause to discuss the stardard presentation of Braidn and
the standard parabolic subgroups derived from this presentation. We begin
by recalling some of the basic relations satisfied by a pair of rotations indexed
by edges in the disk D.

Definition 4.6 (Basic relations). Let e and e1 be two edges in D. Since
they are straight line segments connecting vertices of the convex polygonal
disk D, e and e1 are either disjoint, share a commmon vertex, or they cross
at some point in the interior of each edge. When e and e1 are disjoint,
the rotations δe and δe1 commute, i.e. δeδe1 “ δe1δe. When e and e1 share
a common vertex, δe and δe1 braid, i.e. δeδe1δe “ δe1δeδe1 . We call these
commuting and braiding relations the basic relations of Braidn. When e
and e1 cross, no basic relation between δe and δe1 is defined.

Artin showed that a small set of rotations indexed by edges in D is sufficient
to generate Braidn and that the basic relations between them are sufficient
to complete a presentation of Braidn.

Definition 4.7 (Standard presentation). Consider the abstract group

(4.1) G “

〈
s1, . . . , sn´1

ˇ

ˇ

ˇ

ˇ

sisj “ sisj if |i´ j| ą 1
sisjsi “ sjsisj if |i´ j| “ 1

〉
This is the standard presentation of the n-strand braid group and S “

ts1, s2, . . . , sn´1u is its standard generating set.

Theorem 4.8 ([Art25]). The abstract group G defined by the standard pre-
sentation of the n-strand braid group is isomorphic to the n-strand braid
group. Concretely, the function that sends si to δe P Braidn where e is
the edge connecting pi and pi`1 extends to an isomorphism between G and
Braidn. �

Standard parabolic subgroups are generated by subsets of S.

Definition 4.9 (Standard parabolic subgroups). Let S “ ts1, s2, . . . , sn´1u

be the standard generating set for the abstract group G – Braidn. For any
subset S1 Ă S, the subgroup xS1y Ă G generated by S1 is called a standard
parabolic subgroup. The subsets of the form Sri,js “ ts` | i ď ` ă ju generate
the irreducible standard parabolic subgroups of G. These subsets correspond
to sets of edges forming a connected subgraph in the boundary of D.
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We record two standard facts about the irreducible standard parabolic sub-
groups of the braid groups: (1) they are isomorphic to braid groups and (2)
they are closed under intersection.

Proposition 4.10 (Isomorphisms). Let i, j P rns with i ă j. Then the
irreducible subgroup generated by Sri,js “ ts` | i ď ` ă ju is isomorphic to
Braidk, where k “ j ´ i` 1.

Proof. It is immediate from the standard presentation that Braidk maps
onto Sri,js. That this map is injective follows from the solution of the word
problem, [Art25, §3]. �

Proposition 4.11 (Intersections). For all subsets S1, S2 Ă S, the inter-
section xS1y X xS2y is equal to the standard parabolic subgroup xS1 X S2y .
Moreover, when both xS1y and xS2y are irreducible subgroups, so is xS1XS2y.

Proof. Immediate from Proposition 4.10. �

For later use we record the following fact.

Lemma 4.12. The map Braidn Ñ Z that takes δπ to rkpπq is the abelian-
ization of Braidn.

Proof. The map is well-defined by Proposition 3.7 because if δπ1δπ2 “ δπ3
then the rank function on Braidn satisfies rkπ1 ` rkπ2 “ rkπ3. The fact
that it is the full abelianization is immediate from the standard presentation
(4.1). �

With this we end our digression on standard presentations and return to
dual structure.

Lemma 4.13 (Maximal dual parabolics). The intersection of two maximal
irreducible dual parabolic subgroups is an irreducible dual parabolic subgroup.
In particular, for all n ą 0 and for all i, j P rns,

Fixnpti, juq “ Fixnptiuq X Fixnptjuq.

Proof. For every pair of vertices pi and pj one can select a sequence E “

pe1, . . . , en´1q of edges in D so that together, in this order, they form an
embedded path through all vertices of D starting at pi and ending at pj .
Because the rotations δe for e P E satisfy the necessary basic relations (Def-
inition 4.6), the function that sends s` P S to the rotation δe` extends to
group homomorphism from g : G Ñ Braidn. In fact g is a group isomor-
phism since up to homeomophism of C this is just the usual isomorphism
between the abstract group G and the braid group Braidn. Under this
isomorphism the subgroup xSr2,nsy is sent to the subgroup Fixnptiuq, the
subgroup xSr1,n´1sy is sent to the subgroup Fixnptjuq, and the subgroup
xSr2,nsy is sent to the subgroup Fixnpti, juq. Proposition 4.11 completes the
proof. �
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Lemma 4.14 (Relative maximal dual parabolics). The intersection of two
irreducible dual parabolic subgroups that are both maximal in a third irre-
ducible dual parabolic subgroup is again an irreducible dual parabolic sub-
group. In other words, for all n ą 0 and for all tiu, tju, C Ă rns,

FixnpC Y ti, juq “ FixnpC Y tiuq X FixnpC Y tjuq.

Proof. When C is empty, the statement is just Lemma 4.13 and when C is
rns there is nothing to prove. When C is proper and non-empty, all three
groups are contained in FixnpCq “ BraidA – Braidk where k is the size
of A “ rns ´ C. There is a homeomorphism from DA to the regular k-gon
that sends vertices to vertices, so Lemma 1.2, shows that the assertion now
follows by applying Lemma 4.13 to this k-gon. �

Proposition 4.15 (Arbitrary dual parabolics). Every proper irreducible
dual parabolic subgroup of Braidn is equal to the intersection of the maximal
irreducible dual parabolic subgroups that contain it and, as a consequence,
the collection of irreducible dual parabolics is closed under intersection. In
other words, for all n ą 0 and for every non-empty B Ă rns,

FixnpBq “
č

iPB

Fixnptiuq

and, as a consequence, for all non-empty C,D Ă B,

FixnpC YDq “ FixnpCq X FixnpDq.

Proof. When B is a singleton, the result is trivial and when B has size 2
both claims are true by Lemma 4.13, so suppose that both claims hold for
all subsets of size at most k with k ą 1 and let B be a subset of size k`1. If i
and j are elements in B, and C “ B´ti, ju, then FixnpBq “ FixnpCYti, juq
which is equal to FixnpCYtiuqXFixnpCYtjuq by Lemma 4.14. By applying
the second inductive claim to the sets C Y tiu and C Y tju and simplifying
slightly we can rewrite this as FixnpCq X Fixnptiuq X Fixnptjuq. Applying
the first inductive claim to the set C shows that first claim holds for B and
the second claim for B follows as an immediate consequence. This completes
the induction and the proof. �

Part 2. Complexes

In this part, we study complexes built out of ordered simplices, specifically
how they can be equipped with an orthoscheme metric.
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5. Ordered Simplices

An ordered simplex is a simplex with a fixed linear ordering of its vertex
set. Complexes built out of ordered simplices are often used as explicit mod-
els. Eilenberg and Steenrod, for example, use ordered simplicial complexes
[ES52]. We follow Hatcher in using the more flexible ∆-complexes [Hat02].

Definition 5.1 (Ordered simplices). A k-simplex is the convex hull of k`1
points p0, p1, . . . , pk in general position in a sufficiently high-dimensional real
vector space E. An ordered k-simplex is a k-simplex together with a fixed
linear ordering of its k ` 1 vertices. We write σ “ rp0, p1, . . . , pks for an
ordered k-simplex σ with vertex set tp0, p1, . . . , pku Ă E where the vertices
are ordered left-to-right: pi ă pj in the linear order if and only if i ă j in the
natural numbers. An isomorphism of ordered simplices is an affine bijection
rp0, . . . , pks Ñ rp10, . . . , p

1
ks that takes pi to p1i.

Let E be a vector space containing an ordered k-simplex σ. To facilitate
computations, we establish a standard coordinate system on the smallest
affine subspace of E containing σ which both identifies this subspace with
Rk and also reflects the linear ordering of its vertices.

Definition 5.2 (Standard coordinates). Let σ “ rp0, p1, . . . , pks be an or-
dered k-simplex. We take the ambient vector space E to have origin p0 and
to be spanned by p1, . . . , pk. For each i P rks, let ~vi “ pi´pi´1 be the vector
from pi´1 to pi so that that B “ p~v1, ~v2, . . . , ~vkq is an ordered basis for E.

We call B the standard ordered basis of σ. In this basis pj “
řj
i“1 ~vi and

x “ px1, x2, . . . , xkqB “ x1~v1 ` . . .` xk~vk

“ p´x1qp0 ` px1 ´ x2qp1 ` ¨ ¨ ¨ ` pxk´1 ´ xkqpk´1 ` pxkqpk

“ p1´ x1qp0 ` px1 ´ x2qp1 ` ¨ ¨ ¨ ` pxk´1 ´ xkqpk´1 ` pxkqpk

since p0 is the origin. Since the coefficients in the last equation are barycen-
tric coordinates on E, we see that px1, x2, . . . , xkqB is in σ if and only if
1 ě x1 ě x2 ě ¨ ¨ ¨ ě xk ě 0. In particular, the facets of σ determine the
k`1 hyperplanes given by the equations x1 “ 1, xi “ xi`1 for i P rk´1s and
xk “ 0, respectively. If σ and σ1 are ordered simplices with oriented bases
p~v1, . . . , ~vkq and p~v11, . . . , ~v

1
kq, the unique isomorphism σ Ñ σ1 takes

ř

i αi~vi
to

ř

i αi~v
1
i.

Example 5.3 (Standard Coordinates). Figure 5 shows an ordered 3-simplex
σ. The vector ~v1 is from p0 to p1, the vector ~v2 is from p1 to p2 and the
vector ~v3 is from p2 to p3. With respect to the ordered basis B “ t~v1, ~v2, ~v3u

with p0 located at the origin, p1 “ p1, 0, 0q, p2 “ p1, 1, 0q and p3 “ p1, 1, 1q.

Faces of ordered simplices are ordered by restriction. As such they have
standard coordinates which can be described as follows.
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p0 p1

p2

p3

~v1

~v2

~v3

Figure 5. An ordered 3-simplex. In standard coordinates
p0 is the origin, p1 “ p1, 0, 0q, p2 “ p1, 1, 0q and p3 “ p1, 1, 1q
with respect to the ordered basis B “ t~v1, ~v2, ~v3u.

Lemma 5.4 (Facets). Let σ “ rp0, . . . , pks be an ordered simplex with
ordered basis B “ p~v1, . . . , ~vkq. The ordered basis B1 of the facet τ “

rp0, . . . , pi´1, pi`1, . . . , pks is

B1 “

$

&

%

p~v2, . . . , ~vkq if 0 “ i
p~v1, . . . , ~vi´1, ~vi ` ~vi`1, ~vi`2, . . . , ~vkq if 0 ă i ă k
p~v1, . . . , ~vk´1q if i “ k. �

In anticipation of Definition 6.2 the following definition is modeled on [BH99,
Definition I.7.2].

Definition 5.5 (∆-complex). Let pσλqλPΛ be a family of ordered simplices
with disjoint union X “

Ť

pσλ ˆ tλuq. Let „ be an equivalence relation on
X and let K “ X{ „. Let p : X Ñ K be the quotient map and pλ : σλ Ñ
K,x ÞÑ ppx, λq its restriction to σλ.

We say that K is a ∆-complex if:

(1) the restriction of pλ to the interior of σλ is injective;
(2) for λ P Λ and every face τ of σλ there is a λ1 P Λ and an isomorphism

of ordered simplices h : τ Ñ σλ1 such that pλ|τ “ pλ1 ˝ h;
(3) if λ, λ1 P Λ and interior points x P σλ and x1 P σλ1 are such that

pλpxq “ pλpx
1q then there is an isomorphism of ordered simplices

h : σλ Ñ σλ1 such that pλ1phpxqq “ pλpxq for x P σλ.

We will usually regard ∆-complexes as equipped with a structure as above
and refer to the simplices σλ as simplices of K. We will also make the
identification in (2) implicit and regard faces of σλ as simplices of K.

Turning a simplicial complex into a ∆-complex means to orient the edges
in a consistent way. A setting where a natural orientation exists is the
following.
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Proposition 5.6 (Cayley graphs and ∆-complexes). Let G be a group and
let f : G Ñ pR,`q be a group homomorphism. Let S Ă G be a set of
generators such that fpsq ą 0 for every s P S. The right Cayley graph
Γ “ CaypG,Sq is a simplicial graph whose flag complex X “ FlagpΓq can
be turned into a ∆-complex.

Proof. The right Cayley graph has no doubled edges because fpg´1q “

´fpgq for g P G so that at most one of g and g´1 is in S. It has no
loops because fp1q “ 0 so that 1 R S.

We define a relation ď on G by declaring that g ď gs for s P S and taking
the reflexive transitive closure. The homomorphism f guarantees that this
is a partial order on G. Any two adjacent vertices are comparable so the
restriction to a simplex is a total order. �

6. Orthoschemes

The goal of this section is to equip certain ∆-complexes with a piecewise
Euclidean metric.

Definition 6.1 (Orthoscheme). Let E be a Euclidean vector space and let
σ Ď E be a simplex. Then σ with the induced metric is called a Euclidean
simplex. If σ is an ordered simplex and the associated ordered basis is
orthogonal then σ is an orthoscheme. If it is an orthonormal basis then σ is
a standard orthoscheme.

Definition 6.2 (Orthoscheme complex). An orthoscheme complex is a ∆-
complex where each simplex has been given the metric of an orthoscheme
in such a way that the isomorphisms in the definition of a ∆-complex are
isometries. It is equipped with the length pseudometric assigning to two
points the infimal length of a piecewise affine path.

Remark 6.3. Orthoscheme complexes are M0-simplicial complexes in the
sense of [BH99, I.7.1] so we will not discuss the metric subtleties in detail.
Our main interest concerning the metric is the behavior with respect to
products, which is not among the subtleties.

Lemma 6.4 (Orthoscheme complex structures and edge norms). Let X be
a ∆-complex. There is a one-to-one correspondence between orthoscheme
complex structures on X and maps norm : EdgespXq Ñ Rą0 that satisfy

(6.1) normprp0, p1sq ` normprp1, p2sq “ normprp0, p2sq

for every 2-simplex rp0, p1, p2s of X.

Proof. If X is equipped with a orthoscheme complex-structure, defining
normprp, qsq “ ‖q´ p‖2 gives a map satisfying condition (6.1) (correspond-
ing to the right angle in p1).



BOUNDARY BRAIDS 21

Conversely, the squares of edge lengths of an orthoscheme need to satisfy
(6.1) and this is the only requirement for a well-defined assignment. The
unique isomorphism of ordered simplicial complexes between orthoschemes
with same edge lengths is an isometry. Hence equipping the simplices of
a ∆-complex with a orthoscheme metric satisfying (6.1) gives rise to an
orthoscheme complex. �

We can use this characterization of orthoscheme complexes to extend Propo-
sition 5.6.

Proposition 6.5 (Cayley graphs and orthoschemes). Let G be a group,
f : G Ñ pR,`q be a group homomorphism, and let S be a generating set of
G with fpsq ą 0 for every s P S. The right Cayley graph Γ “ CaypG,Sq is
a simplicial graph whose flag complex X “ FlagpΓq can be turned into an
orthoscheme complex using f .

Proof. By Proposition 5.6 X is a ∆-complex and we claim that

normprg, gssq :“ fpgsq ´ fpgq “ fpsq ą 0

satisfies (6.1).
Indeed

normprg, gss1sq “ fpgss1q ´ fpgq

“ pfpgss1q ´ fpgsqq ` pfpgsq ´ fpgqq

“ normprgss1, gssq ` normprgs, gsq.

since f is a homomorphism. �

Definition 6.6 (Dual braid complex). Let S “ DS˚n be the set of non-
trivial dual simple braids in the braid group Braidn. By Theorem 3.9 the
set S Ă Braid˚n generates the group and by Lemma 4.12 the abelianiza-
tion map f : Braidn Ñ Z sends the non-trivial dual simple braid δπ P S
to the positive integer fpδπq “ rkpπq. By Proposition 6.5, the flag complex
X “ FlagpΓq of the simplicial graph Γ “ CaypBraidn, Sq can be turned
into an orthoscheme complex using f to compute the norm of each edge.
The resulting orthoscheme complex is called the dual braid n-complex and
denoted CplxpBraidnq. Note that every edge of CplxpBraidnq is natu-
rally labeled by an element of S “ DS˚n or, equivalently, by a non-trivial
noncrossing partition. More generally, every simplex is naturally labeled by
a chain of NCn.

It is clear from the construction that Braidn acts freely on CplxpBraidnq
and that CplxpBraidnq is covered by translates of the full subcomplex sup-
ported on DSn, which is therefore a fundamental domain. The key feature,
implying that BraidnzCplxpBraidnq is a classifying space for Braidn, is:

Theorem 6.7 ([Bra01]). The complex CplxpBraidnq is contractible.
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In fact, it is shown in [BM10] CplxpBraidnq is CATp0q when n ă 6 and
in [HKS16] this was extended to the case n “ 6.

7. Products

The main advantage of working with ordered simplices and ∆-complexes is
that they admit well-behaved products.

Example 7.1 (Products of simplices). The product of two 1-simplices is a
quadrangle. It can be subdivided into two triangles in two ways but nei-
ther of these is distinguished. More generally, the product of two (positive-
dimensional) simplices is not a simplex nor does it have a canonical simplicial
subdivision.

In contrast, we will see that the product of two simplices whose vertices
are totally ordered admits a canonical subdivision into chains. We start by
looking at finite products of edges first, i.e. cubes.

Example 7.2 (Subdivided cubes). Let Rk be a k-dimensional real vector
space with a fixed ordered basis B “ t~v1, . . . , ~vku. The unit k-cube Cubek
in Rk is the set of vectors where each coordinate is in the interval r0, 1s and
its vertices are the points where every coordinate is either 0 or 1. There is a
natural bijection between the vertex set of Cubek and the set of all subsets
of rks: simply send each vertex to the set of indices of the coordinates where
the value is 1. If we partially order the subsets of rks by inclusion (to form
the Boolean lattice Boolk), this partially orders the vertices of Cubek, and
by sending B Ă rks to the vector 1B “

ř

iPB ~vi, we obtain a convenient
labeling for the vertices. At the extremes, we write 1 “ 1rks “ p1, 1, . . . , 1q
and 0 “ 1H “ p0, 0, . . . , 0q.

Let H be the collection of hyperplanes Hij in Rk defined by the equations
xi “ xj for i ‰ j P rks. There is a minimal cellular subdivision of Cubek
for which Cubek X Hij is a subcomplex for all i ‰ j P rks and it is a
simplicial subdivision. The subdivision has k! top-dimensional simplices and
the partial order on the vertices of Cubek is a linear order when restricted
to each simplex. In particular, this subdivided k-cube is a ∆-complex.

Remark 7.3. When our selected basis B is orthonormal, Cubek is a regu-
lar Euclidean unit cube and the top-dimensional simplices are orthoschemes.
In other words, the k! simplices in the simplicial structure for Cubek corre-
spond to the k! ways to take k steps from 0 to 1 in the coordinate directions.
A 3-orthoscheme from the simplicial structure on Cube3 is shown in Fig-
ure 6.

Example 7.4 (Products of subdivided cubes). The product of Cubek and
Cube` is naturally identified the unit cube Cubek``. Using the simplicial
subdivision given in Example 7.2, we obtain a canonical ∆-complex structure
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0 1t1u

1t1,2u

1t1,2,3u

Figure 6. A 3-orthoscheme from 0 to 1 “ 1t1,2,3u inside
Cube3. The edges of the piecewise geodesic path are thicker
and darker than the others.

for the product Cubek``. Selecting top-dimensional simplices σ in Cubek
and τ in Cube` corresponds to a product of simplices σ ˆ τ in Cubek``,
which then inherits a simplicial subdivision from that of Cubek``.

Since any ordered simplex can be considered as a top-dimensional simplex
in the subdivision from Example 7.2, we can use the simplicial structure for
Cubek`` to describe the product of two ordered simplices as a ∆-complex.

Example 7.5 (Product of ordered simplices). Let σ and τ be ordered
simplices of dimension k and `, respectively, with σ “ rv0, v1, . . . , vks and
τ “ ru0, u1, . . . , u`s. In standard coordinates σ Ă Rk is the set of points x “
px1, x2, . . . , xkq P Rk satisfying the inequalities 1 ě x1 ě x2 ě ¨ ¨ ¨ ě xk ě 0.
Similarly, τ Ă R` is the set of points y “ py1, y2, . . . , y`q P R` satisfying the
inequalities 1 ě y1 ě y2 ě ¨ ¨ ¨ ě y` ě 0. The product σˆτ is the set of points
px1, . . . , xk, y1, . . . , y`q P Rk ˆ R` satisfying both sets of inequalities. Let H
be the collection of k ¨ ` hyperplanes Hij defined by the equations xi “ yj ,
with i P rks and j P r`s. When we minimally subdivide the polytope σˆτ so
that for every i P rks and every j P r`s, Hij X pσˆ τq is a subcomplex of the
new cell structure, then the new cell structure is a simplicial complex which
contains

`

k``
k

˘

simplices of dimension k ` `. The points in the interiors of
these top-dimensional simplices correspond to points px1, . . . , xk, y1, . . . , y`q
where all k`` coordinates are distinct and the simplex containing this point
is determined by the xy-pattern of the coordinates when arranged in decreas-
ing linear order. For example, if k “ 2, ` “ 1 and x0 ą x1 ą y0 ą x2 ą y1

then its pattern is xxyxy and all generic points with this pattern belong to
the same top-dimensional simplex. The natural partial order on the vertices
of σ ˆ τ is given by the rule pvi1 , uj1q ď pvi2 , uj2q if and only if i1 ď i2 and
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j1 ď j2. This restricts to a linear order on each simplex in the new simplicial
structure, which turns the result into an ordered simplicial complex.

Definition 7.6 (Product of ordered simplices). Let σ and τ be ordered
simplices. The decomposition of σ ˆ τ described in Example 7.5 is the
canonical decomposition. We write σ ⧄ τ to denote the ∆-complex that is
σ ˆ τ with the canonical decomposition.

The construction described in Definition 7.6 is the natural generalization of
partitioning the unit square in the first quadrant by the diagonal line where
the two coordinates are equal. It readily generalizes to finite products of
ordered simplices.

Example 7.7 (Finite products). Let σ1, σ2, . . . , σm be ordered simplices
of dimension k1, k2, . . . , km, respectively, and view σ1 ˆ σ2 ˆ ¨ ¨ ¨ ˆ σm as a
subset of Rk1`¨¨¨`km with coordinates given by concatenating the standard
ordered bases. Let H be the finite collection of hyperplanes defined by an
equation setting a canonical coordinate in one factor equal to a canonical
coordinate in different factor. The minimal subdivision of the product cell
complex X “ σ1 ˆ σ2 ˆ ¨ ¨ ¨ ˆ σm so that for every hyperplane H P H,
HXX is a subcomplex in the new cell structure is a simplicial complex with
N simplices of dimension k1 ` k2 ` ¨ ¨ ¨ ` km, where N is the multinomial
coefficient

`

k1`k2`¨¨¨`km
k1,k2,...,km

˘

. This illustrates that ⧄ is associative.

The canonical subdivision of products of ordered simplices also readily ex-
tends to the product of ∆-complexes.

Definition 7.8 (Products of ∆-complexes). Let X and Y be ∆-complexes.
The product complex X ˆY carries a canonical ∆-complex structure which
can be described as follows. Let pσ : σ Ñ X and pτ : τ Ñ Y be simplices
of X and Y . Then every simplex ρ in the canonical subdivision of σ ˆ τ
is a simplex of X ˆ Y via pρ “ ppσ ˆ pτ q|ρ. We denote X ˆ Y with this
∆-complex structure by X ⧄ Y .

Note that when σ and τ are Euclidean simplices, their product σ ˆ τ in-
herits a Euclidean metric from the metric product of the Euclidean spaces
containing them and when they are ordered Euclidean simplices, the ordered
simplicial complex σ ⧄ τ is constructed out of ordered Euclidean simplices.

The product construct described in Definition 7.6 is well-behaved when
the factors are orthoschemes or standard orthoschemes.

Lemma 7.9 (Products of orthoschemes). If σ and τ are orthoschemes,
then σ ⧄ τ is an orthoscheme complex isometric to the metric product σ ˆ
τ . Moreover, when σ and τ are standard orthoschemes, then every top-
dimensional simplex in σ ⧄ τ is a standard orthoscheme.

Proof. Let σ and τ be ordered Euclidean simplices of dimension k and `,
respectively and let σ ⧄ τ be the simplicial decomposition of the Euclidean
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polytope σ ˆ τ into Euclidean simplices. If B1 and B2 are the standard
ordered bases associated to σ and τ , then by Example 7.5, the ∆-complex
σ⧄τ is a subcomplex of the unit cube Cubek`` in the ordered basis obtained
by concatenating B1 and B2. When B1 and B2 are both orthogonal, σ and
τ are orthoschemes and the concatenated ordered bases produces a metric
Euclidean cube for which the simplicial subdivision in Example 7.2 makes
Cubek`` into an orthoscheme complex. Hence, the subcomplex σ⧄τ is an or-
thoscheme complex as well. The analogous result for standard orthoschemes
follows by considering the case when B1 and B2 are both orthonormal. �

As a consequence we get:

Proposition 7.10 (Products of orthoscheme complexes). If X and Y are
orthoscheme complexes then X ⧄ Y is an orthoscheme complex isometric to
the metric direct product X ˆ Y . �

8. Columns

In this section we describe a particularly useful type of orthoscheme complex,
initially defined in [BM10].

Example 8.1 (Orthoschemes and Rk). Regard R as an infinite linear graph
with vertex set Z and edges from i to i ` 1. Then Rk is isometric to the
k-fold product R ⧄ ¨ ¨ ¨ ⧄ R. This complex has vertex set Zk with simplices
on vertices ~x ď ~x` 1B1 ď . . . ď ~x` 1B` for H Ĺ B1 Ď . . . Ď B` Ď rks. We
call this the standard orthoscheme tiling of Rk. It can also be viewed as the
standard cubing of Rk in which each k-cube has been given the simplicial
subdivision described in Example 7.2.

Alternatively, the orthoscheme tiling of Rk can be viewed as the cell structure
of a simplicial hyperplane arrangement.

Definition 8.2 (Types of hyperplanes). Consider the hyperplane arrange-
ment consisting of two types of hyperplanes. The first type are those defined
by the equations xi “ ` for all i P rks and all ` P Z. The second type are those
defined by the equations xi ´ xj “ ` for all i ‰ j P rks and all ` P Z. When
both types of hyperplanes are used, the resulting hyperplane arrangement
partitions Rk into its standard orthoscheme tiling.

The hyperplanes of the first type define the standard cubing of Rk and the
hyperplanes of the second type are closely related to the Coxeter complex
of the affine symmetric group.

Definition 8.3 (Affine symmetric group). The Euclidean Coxeter group of

type rAk´1 is also called the affine symmetric group ĆSymk. It is generated
by orthogonal reflection in the hyperplanes of the second kind.
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Remark 8.4. Note that the spherical Coxeter group of type Ak´1, the
symmetric group, is generated by reflections in hyperplanes of the second
type for which ` “ 0. Since the roots ei´ ej are perpendicular to the vector
1, both the symmetric group and the affine symmetric group act on the
pk ´ 1q-dimensional space 1K.

Definition 8.5 (Coxeter shapes and columns). The hyperplane arrange-
ment that consists solely of the hyperplanes of the second type restricted
to any hyperplane H defined by the equation xx,1y “ r for some r P R
partitions H – Rk´1 into a reflection tiling by Euclidean simplices whose

shape is encoded in the extended Dynkin diagram of the type rAk´1. We
call the isometry type of this Euclidean simplex the Coxeter shape or Cox-

eter simplex of type rAk´1 and when the subscript is clear from context it
is often omitted to improve clarity. When this hyperplane arrangement is
not restricted to a hyperplane orthogonal to the vector 1, the closure of a
connected component of the complementary region is an unbounded infinite
column that is a metric product σˆR where σ is a Coxeter simplex of type
rA and R is the real line. We call these the columns of Rk.

One consequence of this column structure is that the standard orthoscheme
tiling of Rk partitions the columns of Rk into a sequence of orthoschemes.
We begin with an explicit example.

Example 8.6 (Column in R3). Let C be the unique column of R3 that
contains the 3-simplex shown in Figure 6. The column C is defined by the
inequalities x1 ě x2 ě x3 ě x1´ 1 and its sides are the hyperplanes defined
by the equations x1 ´ x2 “ 0, x2 ´ x3 “ 0 and x1 ´ x3 “ 1. The vertices of
Z3 contained in this column form a sequence tv`u`PZ where the order of the
sequence is determined by the inner product of these points with the special
vector 1 “ p13q “ p1, 1, 1q. Concretely, the vertex v` is the unique point in
Z3XC such that xv`,1y “ ` P Z. The vectors in this case are v´1 “ p0, 0,´1q,
v0 “ p0, 0, 0q, v1 “ p1, 0, 0q, v2 “ p1, 1, 0q, v3 “ p1, 1, 1q, v4 “ p2, 1, 1q and
so on. Successive points in this list are connected by unit length edges
in coordinate directions and this turns the full list into a spiral of edges.
Traveling up the spiral, the edges cycle through the possible directions in
a predictable order. In this case they travel one unit step in the positive
x-direction, y-direction, z-direction, x-direction, y-direction, z-direction and
so on. Any 3 consecutive edges in the spiral have a standard 3-orthoscheme
as its convex hull and the union of these individual orthoschemes is the
convex hull of the full spiral, which is also the full column C. See Figure 7.
Metrically C is σ ˆ R where σ is an equilateral triangle, i.e. the Coxeter

simplex of type rA2.

Columns in Rk have many of the same properties.
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p1, 1, 1q

p2, 2, 2q

p3, 3, 3q

p0, 0, 0q

p1, 1, 0q

p2, 2, 1q

p2, 1, 1q

p3, 2, 2q

p4, 3, 3q

p3, 3, 2q

p4, 4, 3q

p1, 0, 0q

Figure 7. A portion of the column in R3 that contains the
orthoscheme shown in Figure 6. The edges of the spiral are
thicker and darker than the others - see Example 8.6.

Definition 8.7 (Columns in Rk). A column C of Rk can be defined by
inequalities of the form

(8.1) xπ1 ` aπ1 ě xπ2 ` aπ2 ě ¨ ¨ ¨ ě xπk ` aπk ě xπ1 ` aπ1 ´ 1

where pπ1, π2, . . . , πkq is a permutation of integers p1, 2, . . . , kq and a “
pa1, a2, . . . , akq is a point in Zk. The vertices of Zk contained in C form
a sequence tv`u`PZ where the order of the sequence is determined by the
inner product of these points with the vector 1 “ p1, 1, . . . , 1q. Concretely
the vertex v` is the unique point in Zk X C such that xv`,1y “ ` P Z. Suc-
cessive points in this list are connected by unit length edges in coordinate
directions and this turns the full list into a spiral of edges. Traveling up the
spiral, the edges cycle through the possible directions in a predictable order
based on the list pπ1, π2, . . . , πkq. Any k consecutive edges in the spiral have
a standard k-orthoscheme as its convex hull and the union of these individ-
ual orthoschemes is the convex hull of the full spiral, which is also the full

column C. Metrically, C is σˆR where σ is a Coxeter simplex of type rAk´1.
Since the full column is a convex subset of Rk, it is a CATp0q space.
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Definition 8.8 (Dilated columns). If the ´1 in the final inequality of Equa-
tion 8.1 defining a column in Rk is replaced by a ´` for some positive integer
`, then the shape described is a dilated column, i.e. a dilated version of a sin-
gle column. As a metric space, a dilated column is a metric direct product

of the real line and a Coxeter shape of type rA dilated by a factor of ` and
is also a CATp0q space. As a cell complex, a dilated column is the union of
`k´1 ordinary columns of Rk tiled by orthoschemes.

Some of these dilated columns are of particular interest.

Definition 8.9 (pk, nq-dilated columns). Let n ą k ą 0 be positive integers
and let C be the full subcomplex of the orthoscheme tiling of Rk restricted
to the vertices of Zk that satisfy the strict inequalities

x1 ă x2 ă ¨ ¨ ¨ ă xk ă x1 ` n.

We call C the pk, nq-dilated column in Rk. A point x P Zk is in C if and only
if its coordinates are strictly increasing in value from left to right and the
gap between the first and the last coordinate is strictly less than n. To see
that the subspace C really is a dilated column of Rk, note that it is defined
by the weak inequalities

x1 ´ 1 ď x2 ´ 2 ď ¨ ¨ ¨ ď xk ´ k ď x1 ´ pk ` 1q ` n.

There is a natural bijection between the sets of integer vectors satisfying
these two sets of inequalities that uses the usual combinatorial trick for
converting between statements about strictly increasing integer sequences
and statements about weakly increasing ones. From the weak inequalities
we see that the pk, nq-dilated column C is a pn´ kq dilation of an ordinary
column and thus a union of pn´ kqk´1 ordinary columns.

Example 8.10 (p2, 6q-dilated column). When k “ 2 and n “ 6, the defining
inequalities are x ă y ă x`6 and a portion of the p2, 6q-dilated column C is
shown in Figure 8. The meaning of the vertex labels used in the figure are
explained in Example 10.4. Note that C is metrically an ordinary column
dilated by a factor of 4, its cell structure is a union of p6´2q2´1 “ 4 ordinary
columns, and it is defined by the weak inequalities x` 1 ď y and y ď x` 5
or, equivalently, x´ 1 ď y ´ 2 ď x´ 3` 6.

Part 3. Boundary Braids

We now come to our main topic of study: boundary braids. This part begins
by introducing orthoscheme configuration spaces and describing the specific
case of an oriented n-cycle. We then prove the fact that if several strands
are individually boundary parallel then they are simultaneously boundary
parallel. Finally, we study dual simple boundary braids in detail and use
our findings there to prove the main theorems.



BOUNDARY BRAIDS 29

9. Configuration Spaces

In this section we introduce a new combinatorial model for the configuration
space of k points in a directed graph and, more generally, k points in an
orthoscheme complex. In contrast to the configuration spaces for graphs
used by Abrams and Ghrist, which are cubical [Abr00, Ghr01], our models
are simplicial.

Definition 9.1 (Products of graphs). Let Γ be a metric simplicial graph
with oriented edges of unit length. Note that Γ can be regarded either as
an ordered simplicial complex or as a cubical complex and we can form di-
rect products of several copies of Γ in either context. The resulting spaces
will be naturally isometric but their cell structures differ. We denote by
ProdkpΓ,mq respectively ProdkpΓ,lq the orthoscheme product respec-
tively cubical product of k copies of Γ.

Example 9.2 (Orthoscheme product spaces). If Γ is an oriented edge of
unit length then ProdkpΓ,lq is a unit k-cube while ProdkpΓ,mq is the
simplicial subdivision of the k-cube described in Example 7.2. If Γ is R
subdivided in edges of unit length then ProdkpΓ,lq is the standard cubing
of Rk while ProdkpΓ,mq is the standard orthoscheme tiling of Rk described
in Example 8.1.

Recall from Definition 1.1 that the (topological) configuration space of k
points in Γ is Γk ´ DiagkpΓq where DiagkpΓq is the thick diagonal. To
obtain a combinatorial configuration space, we take the full subcomplex
supported on this subset with respect to either of the above cell structures.
For the cubical structure this was first done by Abrams [Abr00]. With the
simplicial cell structure in place, our definition is completely analogous.

Definition 9.3 (Orthoscheme configuration spaces). Let Γ be a metric sim-
plicial graph with oriented edges of unit length. The orthoscheme configu-
ration space of k labeled points in an oriented graph Γ is the full subcomplex
ConfkpΓ,mq of ProdkpΓ,mq supported on ProdkpΓ,mq´DiagkpΓq. Thus,
a closed orthoscheme of ProdkpΓ,mq lies in ConfkpΓ,mq if and only if it is
disjoint form DiagkpΓq. The orthoscheme configuration space of k unlabeled
points is UConfkpΓ,mq “ ConfkpΓ,mq{Symk.

Remark 9.4 (Open questions). Since the simplicial structure for the prod-
uct ProdkpΓ,mq is a refinement of the cubical structure of ProdkpΓ,lq,
the orthoscheme configuration space ConfkpΓ,mq lies between the topolog-
ical configuration space ConfkpΓq and the cubical one ConfkpΓ,lq. It is
therefore interesting to compare it to either, specifically, to determine under
which conditions two of them are homotopy equivalent. In Example 10.2
we will see that the orthoscheme configuration and the cubical configuration
space are generally not homotopy equivalent. Cubical configuration spaces
are known to be non-positively curved [Abr00]. We do not know whether
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the same is true of orthoscheme configuration spaces. However, in the next
section we will see that they are in the most basic case where Γ is a single
oriented cycle.

10. Points on a Cycle

For the purposes of this article, we are primarily interested in the or-
thoscheme configuration spaces of a single oriented cycle. In this section,
we treat this case in detail.

Definition 10.1 (Oriented cycles). An oriented n-cycle is a directed graph
Γn with vertices indexed by the elements of Z{nZ and a directed unit-length
edge from i to i` 1 for each i P Z{nZ. In illustrations we draw an oriented
n-cycle so that it is the boundary cycle of a regular n-gon in the plane
with its edges oriented counter-clockwise. The graph Γn can be viewed as
R{nZ. Similarly, the orthoscheme product space ProdkpΓn,mq is an k-
torus Rk{pnZqk where Rk carries the orthoscheme structure described in
Example 8.1.

For the rest of the section Γn will denote an oriented n-cycle.

Example 10.2 (Cubical vs. orthoscheme). In both the cubical and or-
thoscheme cell structure of pΓnq

n the only vertices not on the thick diagonal
DiagnpΓnq are the n-tuples where each entry is a distinct vertex of Γn.
These form a single Symn-orbit. In the cubical structure no edge avoids
DiagnpΓnq, so ConfnpΓn,lq is a discrete space consisting of n! points and
UConfnpΓn,lq is a single point.

In the orthoscheme structure, there are edges that are disjoint from
DiagnpΓnq. These correspond to the motion where all n points rotate
around the n-cycle simultaneously in the same oriented direction and they
are longest edges in the top-dimensional orthoschemes. No other simplices
avoid DiagnpΓnq. Thus ConfnpΓn,mq has pn ´ 1q! connected components
each of which is an oriented n-cycle. The unordered configuration space
UConfnpΓn,mq is a circle consisting of a single vertex and a single edge.

This illustrates that the cubical and the orthoscheme configuration spaces
are generally not homotopy equivalent. Note that in this example, the topo-
logical configuration spaces are homotopy equivalent to the orthoscheme
versions. However, reversing the orientation of a single edge makes the or-
thoscheme configuration spaces equal to the cubical ones and therefore not
homotopy equivalent to the topological ones.

The purpose of the present section is the following result.

Proposition 10.3 (Points on a cycle and curvature). Each component of the
universal cover of ConfkpΓnq is isomorphic, as an orthoscheme complex, to
the pk, nq-dilated column and therefore CATp0q. In particular, ConfkpΓnq
and UConfkpΓnq are non-positively curved.
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Figure 8. A portion of the p2, 6q-dilated column, i.e. the full
subcomplex of the orthoscheme complex of R2 on the vertices
satisfying the strict inequalities x ă y ă x ` 6. The vertex
labels and the shaded regions are used to construct simplicial
configuration spaces for 2 labeled points in a 6-cycle and for
2 unlabeled points in a 6-cycle.

Proof. First recall that ProdkprΓn,mq – ČProdkpΓn,mq is Rk with the struc-
ture described in Example 8.1 (where the tilde denotes the universal cover
on both sides). Let C be the subcomplex obtained by removing the hyper-
planes of the form xi ´ xj “ ` with i ‰ j P rks and ` P nZ and taking the
full subcomplex. Since these hyperplanes descend to the thick diagonal, we
see that ConfkpΓnq – C{pnZqk.

Notice that these hyperplanes include the ones used to define the pk, nq-
dilated column in Rk (Definition 8.9). Thus one connected component of
C is a pk, nq-dilated column in Rk. Since Symk permutes the connected
components, each component is a dilated column. Thus each component of
C is CATp0q and, in particular, is simply connected.

Since both pnZqk and Symk act freely on C, both C Ñ ConfkpΓnq and
C Ñ UConfkpΓnq are covering maps and thus the configuration spaces
ConfkpΓnq and UConfkpΓnq are both non-positively curved. �

We now give two examples which illustrate Proposition 10.3.

Example 10.4 (2 labeled points in a 6-cycle). Figure 8 shows a portion
of the infinite strip that is the p2, 6q-dilated column in R2. When this
strip is quotiented by the portion of the p6Zq2-action on R2 that stabilizes
this strip, its vertices can be labeled by two labeled points in a hexagon.
The black dot indicates the value of its x-coordinate mod 6 and the white
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dot indicates the value of its y-coordinate mod 6. The rightmost vertex
of the hexagon corresponds to 0 mod 6 and the residue classes proceed in
a counterclockwise fashion. The five hexagons on the y-axis, for example,
have x-coordinate equal to 0 mod 6 and y-coordinate ranging from 1 to
5 mod 6. One component of the labeled orthoscheme configuration space
Conf2pX,mq is an annulus formed by identifying the top and bottom edges
of the region shown according to their vertex labels. Actually, in this case
there is only p2 ´ 1q! “ 1 component, so the annulus is the full labeled
orthoscheme configuration space.

Example 10.5 (2 unlabeled points in a 6-cycle). The unlabeled orthoscheme
configuration space is formed by further quotienting the labeled orthoscheme
configuration space to remove the distinction between black and white dots.
In particular the 5 vertices shown on the horizontal line y “ 6 are identified
with the 5 vertices on the vertical line x “ 0. This identification can be
realized by the glide reflection sending px, yq to py, x` 2q, a map which also
generates the unlabeled stabilizer of the p2, 6q-dilated column. The heavily
shaded region is a fundamental domain for this Z-action and the unlabeled
orthoscheme configuration space is the formed by identifying its horizon-
tal and vertical edges with a half-twist forming a Möbius strip. The heavily
shaded labels are the preferred representatives of the vertices in the quotient.

11. Boundary Braids

We now come to our main object of study, boundary braids. The goal of
this section is a key technical result saying that if certain strands of a braid
can individually be realized as boundary-parallel strands then they can be
realized as boundary parallel strands simultaneously.

Lemma 11.1 (Boundary parallel rotation Braids). Let A Ď rns not be a
singleton and define

B “ tb | b R A or b` 1 P Au

Then δA is a pB, ¨q-boundary braid but not a pb, ¨q-boundary braid for any
b P rns ´B.

Proof. For A “ H and A “ rns the statement is clear so we assume 2 ď
|A| ă n from now on.

The first statement is straightforward by considering the standard rep-
resentative of δA, given by constant-speed parametrization of each strand
along the boundary of the subdisk DA.

For the second statement, let b P rns ´B. Then b P A but b` 1 R A. Fix
the standard representative f of δA. Let c “ pb´1q¨permpδAq, meaning that
the strand f b´1 ends in c. Thus c P tb´1, bu. We consider a disc U Ď IˆDn

that is bounded by the following four paths in BpIˆDnq: the strand f b´1
c , the

strand f b`1
b`1 , the straight line in t0uˆDn connecting p0, pb´1q and p0, pb`1q,
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and the straight line in t1u ˆDn connecting p1, pcq and p1, pb`1q. Now note
that since b P A, the strand f b does not end in pb and therefore not in
the set tpc, . . . , pb`1u which is either tpb, pb`1u or tpb´1, pb, pb`1u, depending
on whether or not b ´ 1 P A. As a consequence the strand f b starts on
one side of the disk and ends on the other side, and thus it transversely
intersects the disk an odd number of times. Since the parity of the number of
transverse intersections is preserved under homotopy of strands and strands
which remain in the boundary have no such intersections, we may conclude
that the pb, ¨q-strand is not boundary parallel in any representative for δA.

�

Definition 11.2 (Wrapping number). Let β be a pb, ¨q-boundary braid and
let f be a representative for which the image of f b lies in the boundary of
Dn. If we view the boundary of Dn as an n-fold cover π : BDn Ñ S1 of the
standard cell structure for S1 with one vertex and one edge, then boundary
paths in BDn that start and end at vertices of Dn may be considered as lifts
of loops in S1. More concretely, let ϕ : RÑ BDn be a covering map such that
ϕpiq “ pi for each i P Z. Let f̃ b be any lift of f b via this covering and define

the wrapping number of the pb, cq-strand of f to be wf pb, cq “ f̃ bp1q´ f̃ bp0q.
A slightly different description is as follows. Consider the diagram

r0, 1s BDn

S1 S1

f b

{0„1 π

f b˚

where the left map is the quotient map that identifies 0 and 1. The map f b˚
is defined by commutativity of the diagram. Then the wrapping number of
f b is the winding number of f b˚.

Notice that the wrapping number is n times what one would reasonably
define as the winding number.

Lemma 11.3. The wrapping number is well-defined.

Proof. Let f be a representative of the pb, ¨q-boundary braid β for which f b

lies in the boundary; we temporarily denote the wrapping number by wf pb, ¨q
to indicate the presumed dependence on our choice of representative. If f
and f 1 both represent β, then f 1 ¨f´1 is a representative for the trivial braid
with wf 1¨f´1pb, bq “ wf 1pb, ¨q´wf pb, ¨q. It therefore suffices to show that each
strand in every representative of the trivial braid has wrapping number zero.

Now, let f be a representative of the trivial braid 1 for which f b lies in
the boundary, and suppose that the wrapping number wf pb, bq ‰ 0. If f b

1

is another strand in f , then we may obtain a map to the pure braid group
PBraid2 by forgetting all strands except f b and f b

1

. The image β1 of the
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trivial braid under this map may be written as an even power of δ2 since
δ2

2 generates PBraid2, and the wrapping numbers can then be related as
w1pb, bq “

n
2wβ1pb, bq. However, it is clear from the procedure of forgetting

strands that the resulting braid in PBraid2 is trivial, and since every braid
in PBraid2 has both strands boundary parallel, we know that wβ1pb, bq is
zero, and thus so is w1pb, bq. Therefore, every representative for the trivial
braid has trivial wrapping numbers, and we are done. �

Lemma 11.4. If β and γ are braids in Braidn such that β is a pb, b1q-
boundary braid and γ is a pb1, ¨q-boundary braid, then γβ is a pb, ¨q-boundary
braid with wrapping number wβγpbq “ wβpbq ` wγpb

1q.

Proof. If f and g are representatives of β and γ respectively such that f bb1 and

gb
1

are boundary strands then fg is a representative of βγ such that pfgqb

is a boundary strand. For this representative it is clear that the wrapping
numbers add up in the described way. �

Lemma 11.5. Let B Ď rns and β P Braidn. Then β P FixnpBq if and
only if wβpbq “ 0 for all b P B.

Proof. If β P FixnpBq, then there is a representative f of β in which each
pb, ¨q-strand is fixed and thus wβpb, ¨q “ 0.

For the other direction, we begin with the case that B “ tbu. Let f be a
representative of β P BraidnpB, ¨q with the pb, ¨q strand in the boundary of
Dn, and suppose that wβpb, ¨q “ 0. Then the strand f b begins and ends at
the vertex pb, and there is a homotopy fptq of f which moves every other

strand off the boundary without changing f b. That is, f b
1

ptq R BDn whenever
b1 P rns ´ tbu and 0 ă t ă 1. After performing this homotopy, we note that
fp1q is a representative of β in which the pb, bq-strand has wrapping number
0 and there are no other braids in the boundary. Thus, there is a homotopy
of this strand to the constant path, and therefore β P Fixnptbuq.

More generally, if B Ď rns, then the set of braids β P BraidnpB, ¨q with
wβpb, ¨q “ 0 for all b P B are those which lie in the intersection of the fixed
subgroups Fixnptbuq. By Proposition 4.15, this is equal to FixnpBq and we
are done. �

Lemma 11.6. Let b1, . . . , bk be integers satisfying 0 ă b1 ă ¨ ¨ ¨ ă bk ď n
and suppose that β P Braidn is a pbi, ¨q-boundary braid for every i. Then

b1 ` wβpb1, ¨q ă b2 ` wβpb2, ¨q ă ¨ ¨ ¨ ă bk ` wβpbk, ¨q ă b1 ` wβpb1, ¨q ` n.

Proof. Note that it suffices to prove that

bi ` wβpbi, ¨q ă bj ` wβpbj , ¨q ă bi ` wβpbi, ¨q ` n

whenever i ă j or, in other words, that

wβpbj , ¨q ´ wβpbi, ¨q P tbi ´ bj ` 1, . . . , bi ´ bj ` n´ 1u.
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As a first case, suppose both wβpbi, ¨q and wβpbj , ¨q are divisible by n. Then
forgetting all but the pbi, biq- and pbj , bjq-strands of β yields a pure braid

β1 P PBraid2 which can be expressed as β1 “ δ2
2` for some ` P Z since

PBraid2 “ xδ2
2y. Then

wβpbh, bhq “
n

2
wβ1pbh, bhq “ n`

for each h P ti, ju and since every two-strand braid has simultaneously
boundary parallel strands with equal wrapping numbers, we conclude that
wβpbi, biq “ wβpbj , bjq. Therefore, wβpbj , bjq ´ wβpbi, biq “ 0, which satisfies
the inequalities above.

For the general case, define

γ “ βδn
´wβpbi,¨q

and observe that wγpbi, ¨q “ 0. Note that wγpbj , ¨q is not congruent to bi´bj
mod n; if it were, then the pbi, ¨q- and pbj , ¨q-strands of γ would terminate
in the same vertex. Let e then be the representative of wγpbj , ¨q modulo n
that lies in the interval tbi ´ bj ` 1, . . . , bi ´ bj ` n´ 1u. Then

α “ γδrns´tbiu
´e

has both its pbi, ¨q- and its pbj , ¨q-strand boundary parallel with wrapping
numbers

wαpbi, ¨q “ 0 and wαpbj , ¨q ” 0 mod n.

It follows from the case initially considered that the congruence on the right
is actually an equality.

Tracing back we see that wγpbj , ¨q “ e and

wβpbj , ¨q ´ wβpbi, ¨q “ e P tbi ´ bj ` 1, . . . , bi ´ bj ` n´ 1u

as claimed. �

In what follows we will see that the inequalities given above are sharp in the
sense that any tuple of numbers satisfying the hypotheses for Lemma 11.6
can be realized as the wrapping numbers for a braid.

Lemma 11.7. Let b1, . . . , bk and w1, . . . , wk be integers satisfying 0 ă b1 ă
¨ ¨ ¨ ă bk ď n and

b1 ` w1 ă b2 ` w2 ă . . . ă bk ` wk ă b1 ` w1 ` n.

There is a braid β P Braidn such that β is a pB, ¨q-boundary braid for
B “ tb1, . . . , bku with wβpbi, ¨q “ wi for each i.

Proof. First let w “ mintw1, . . . , wku and note that for any boundary braid
β1 P BraidnpB, ¨q the braid β “ β1δw has wrapping numbers wβpb, ¨q “
wβ1pb, ¨q ` w. It therefore suffices to show the claim in the case where some
wi is 0 and thus all wi are in t0, . . . , n´ 1u. We assume this from now on.

Now the proof is by induction on maxtw1, . . . , wku, the case v “ 0 being
trivial. Let B0 “ tbi | wi “ 0u and Bě1 “ tbi | wi ě 1u. We claim that
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there is no b P B0 with b ´ 1 P B1. If there were, then necessarily b “ bi
and b´ 1 “ bi´1 for some index i (with the understanding that b0 “ bk and
b´1 “ bk´1), but then

bi´1 ` wi´1 ě bi´1 ` 1 “ bi “ bi ` wi

and this violates the assumption.
Let β1 be a braid satisfying the claim for

b1i “

"

bi wi “ 0
bi ` 1 wi ě 1

and w1i “ mintwi ´ 1, 0u, where we note that such a braid exists by the
induction hypothesis. Let A “ Bě1 Y tb ` 1 | b P Bě1u. We claim that
β “ δAβ

1 is as needed. Indeed, β is a pB, ¨q-boundary braid by Lemma 11.1,
and it has the following wrapping numbers:

wβpb, ¨q “

"

wβ1pb` 1, ¨q ` 1 b P Bě1

wβ1pb, ¨q b P B0.

Thus wβpbi, ¨q “ wi for every i. �

Proposition 11.8. Let β P Braidn. All boundary parallel strands of β are
simultaneously boundary parallel. That is, if β is a pb, ¨q-boundary braid for
every b P B, then it is a pB, ¨q-boundary braid.

Proof. Let B Ď rns and suppose β P Braidn is a pb, ¨q-boundary braid
for each b P B. If we write B “ tb1, . . . , bku with 0 ă b1 ă b2 ă ¨ ¨ ¨ ă

bk ď n, then the wrapping numbers wβpbi, ¨q satisfy the inequalities given
by Lemma 11.6. Therefore by Lemma 11.7 there is a pB, ¨q-boundary braid
γ P Braidn with the same wrapping numbers as β. By Lemma 11.4, βγ´1

is a pb, bq-boundary braid with wβγ´1pb, bq “ 0 for each b P B. Applying

Lemma 11.5, we see that βγ´1 P FixnpBq and, in particular, it is a pB, ¨q-
boundary braid. It follows that β “ pβγ´1qγ is a pB, ¨q-boundary braid, as
well. �

As a consequence of Proposition 11.8 we obtain the following proposition
which we state in analogy with Proposition 4.15.

Corollary 11.9. Intersections of sets of boundary braids are sets of bound-
ary braids. Concretely, if B Ď rns, then

BraidnpB, ¨q “
č

bPB

Braidnptbu, ¨q

and equivalently,

BraidnpC YD, ¨q “ BraidnpC, ¨q XBraidnpD, ¨q

for any C,D Ď rns.
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12. Dual Simple Boundary Braids

We start studying boundary braids in more detail by exploring the poset of
boundary braids that are also dual simple.

Definition 12.1 (Boundary braids). Let B Ď rns. We denote the subposet
of DSn consisting of pB, ¨q-boundary braids by DSnpB, ¨q. Notice that if
β P DSn, then the wrapping numbers satisfy wβpb, ¨q P t0, 1u for each b P B.

Definition 12.2 (Boundary partitions). Let B Ď rns. We say that a non-
crossing partition π P NCn is a pB, ¨q-boundary partition if each b P B either
shares a block with b` 1 (modulo n) or forms a singleton block tbu P π. We
denote by NCnpB, ¨q the poset of all pB, ¨q-boundary partitions.

Definition 12.3 (Boundary permutations). Let B Ď rns. We say that π P
NCn is a pB, ¨q-boundary permutation if for all b P B, b¨σπ P tb, b`1u (modulo
n). We denote the sets of pB, ¨q-boundary permutations by NPnpB, ¨q.

These definitions fit together in the expected way.

Proposition 12.4. Let B Ď rns. The natural identifications between NCn,
DSn, and NPn restrict to isomorphisms

DSnpB, ¨q – NCnpB, ¨q – NPnpB, ¨q.

Proof. Fix B Ď rns. Let π P NCnpB, ¨q and consider the corresponding dual
simple braid δπ P DSn. It is

δπ “
ź

APπ
|A|ě2

δA.

It is clear that δπ is a pB, ¨q-boundary braid if and only if each δA is. By
Lemma 11.1 this is the case if b P A implies b ` 1 P A for every b P B
and every (non-singleton) A. This matches the definition for π to be a
pB, ¨q-boundary partition.

Now let σπ be the permutation corresponding to π. Note that b ¨ σπ “ b
if and only if tbu is a block of π and that b ¨ σπ “ b` 1 if and only if b and
b` 1 lie in the same block. From this it is clear that σπ is a pB, ¨q-boundary
permutation if and only if π is a pB, ¨q-boundary partition. �

Example 12.5. Let B “ t2, 4, 5u Ď r5s. Then NC5pB, ¨q is a subposet of
NC5 with 12 elements, depicted in Figure 9.

We now define two maps on the posets described above. The first map
takes a braid to one fixing B while the second takes it to a canonical braid
with the same behavior on the specified boundary strands.
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Figure 9. The poset of boundary partitions NC5pB, ¨q,
where the upper-right vertex of each noncrossing partition
is labeled by 1 and elements of B “ t2, 4, 5u are labeled by
a white dot. The blue and red edge colors serve to illustrate
the direct product structure described in Proposition 12.16.

Definition 12.6 (FixB). For B Ď rns we define the map

FixB : NCn Ñ NCnpB, ¨q

π ÞÑ tA´B | A P πu Y ttbu | b P Bu.

Thus FixBpπq is obtained from π by making each b P B a singleton block.
We also denote by FixB the corresponding maps NPn Ñ NPnpB, ¨q and
DSn Ñ DSnpB, ¨q. We call an element in the image of FixB a B-fix parti-
tion, braid, or permutation, and we refer to the entire image by the short-
hand notation FixpNCnpBqq. We adopt similar notations for the analogous
settings of NPnpB, ¨q and DSnpB, ¨q.

Lemma 12.7. Let B Ď rns.

(1) for π P NCnpBq, Fix
Bpπq is the maximal B-fix element below π;

(2) FixB preserves order;
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σ Fixpσq Movepσq

Figure 10. The noncrossing partitions corresponding to σ,
FixBpσq, and MoveBpσq as described in Example 12.11. The
white dots form the set B.

(3) FixBpπq ď π for all π P NCn;
(4) FixB is idempotent, i.e. pFixBq2 “ FixB;
(5) if α P DSn is B-fix and αβ P DSn then FixBpαβq “ αFixBpβq;

Proof. The first statement is clear from the definition and the second, third
and fourth statement follow from it.

In the fifth statement αFixBpβq ď αβ is B-fix so it is ď FixBpαβq by
(1). Conversely, α´1FixBpβq ď β is B-fix so it is ď FixBpβq by (1). �

Lemma 12.8. FixpNCnpBqq “ DSnXFixnpBq.

Proof. A braid δπ P DSn lies in FixpNCnpBqq if and only if every b P B is a
singleton block of π if and only if δπ P FixnpBq. �

Definition 12.9 (MoveB). For B Ď rns we define the map

MoveB : DSnpB, ¨q Ñ DSnpB, ¨q

by the equation δπ “ FixBpδπqMoveBpδπq. We also denote by MoveB the
corresponding maps NCnpB, ¨q Ñ NCnpB, ¨q and NPnpB, ¨q Ñ NPnpB, ¨q.
We refer to the image of MoveB by the shorthand MovepNCnpB, ¨qq, with
analogous notations for NPnpB, ¨q and DSnpB, ¨q.

Lemma 12.10. The map MoveB is well-defined, i.e. FixBpδπq
´1δπ is a

dual simple braid for each π P NCnpB, ¨q.

Proof. We know from Lemma 12.7 that FixBpπq ď π. Thus by Proposi-
tion 3.7 there is a π1 such that FixBpδπqδπ1 “ δπ. Then MoveBpδπq “
δπ1 . �
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Example 12.11. Let σ “ p1 2 3 4 5 6qp7 8 9q and B “ t2, 4, 5, 7u. Then
we have FixBpσq “ p1 3 6qp8 9q and MoveBpσq “ p2 3qp4 5 6qp7 8q. See
Figure 12.

Although the output of MoveB is less easily described than that of FixB,
both maps satisfy many similar properties. Mirroring Lemma 12.7, we now
describe several properties of the MoveB map.

Lemma 12.12. Let B Ď rns.

(1) for each π P NCnpBq, MoveBpπq is the minimal π1 ď π such that
wδπ1 pb, ¨q “ wδπpb, ¨q for each b P B;

(2) MoveB preserves order;
(3) MoveBpπq ď π for all π P NCn;
(4) MoveB is idempotent, i.e. pMoveBq2 “MoveB.

Proof. Suppose that δπ1 is a dual simple braid with π1 ď π and wrapping
numbers which satisfy wδπpb, ¨q “ wδπ1 pb, ¨q for all b P B. Then δπδ

´1
π1

is a dual simple braid by Proposition 3.5 and is B-fix by Lemma 12.8.
Hence, by Lemma 12.7, δπδ

´1
π1 ď FixBpδπq and by rearranging, we have

that FixBpδπq
´1δπ ď δπ1 and thus MoveBpδπq ď δπ1 .

The second statement follows since for each b P B, the wrapping num-
ber wβpb, ¨q is monotone with respect to NCnpB, ¨q. The third and fourth
statement are immediate from the first. �

The map MoveB is multiplicative in the following sense.

Lemma 12.13. Let B Ď rns. Let β P DSnpB,B
1q and β1 P DSnpB

1, ¨q be

such that ββ1 P DSnpB, ¨q. Then MoveBpββ1q “MoveBpβqMoveB
1

pβ1q.

Proof. By Lemma 12.12(2), we know that MoveBpβq ď MoveBpββ1q and
thus by Proposition 3.5, MoveBpβq´1MoveBpββ1q is a dual simple braid.
By Lemma 11.4, this braid has B1-indexed wrapping numbers which are
equal to those of MoveB

1

pβ1q. Hence, by Lemma 12.12, we know that

MoveB
1

pβ1q ďMoveBpβq´1MoveBpββ1q.

Equivalently, we have

MoveBpβqMoveB
1

pβ1q ďMoveBpββ1q

in the partial order on Braidn, and thus MoveBpβqMoveB
1

pβ1q is a dual
simple braid. Since this braid has the same B-indexed wrapping numbers
as MoveBpββ1q, another application of Lemma 12.12(1) tells us that

MoveBpββ1q ďMoveBpβqMoveB
1

pβ1q.

Combining the above inequalities, we have

MoveBpβqMoveB
1

pβ1q ďMoveBpββ1q ďMoveBpβqMoveB
1

pβ1q

and therefore MoveBpββ1q “MoveBpβqMoveB
1

pβ1q. �
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We now study at the structure of FixpNCnpBqq and MovepNCnpB, ¨qq inside
NCnpB, ¨q.

Remark 12.14 (Minima and maxima). The identity braid is clearly the
minimal element for both FixpDSnpBqq and MovepDSnpB, ¨qq. Since FixB

and MoveB are order-preserving maps, the maximal elements are FixBpδq
and MoveBpδq, respectively.

Lemma 12.15. Let B Ď rns. Then FixBpMoveBpδπqq is the identity braid
for all π P NCnpB, ¨q. In particular, the intersection of FixpNCnpBqq and
MovepNCnpB, ¨qq contains only the discrete partition.

Proof. Let π P NCnpB, ¨q be arbitrary. Then

FixBpMoveBpδπqq “ FixBpFixBpδπq
´1δπq “ FixBpδπq

´1FixBpδπq “ 1

by Lemma 12.7(5). The second claim follows directly from the wrapping
number characterizations of FixpNCnpBqq and MovepNCnpB, ¨qq given in
Definition 12.6 and Lemma 12.17. �

We now prove the main result of this section.

Proposition 12.16. Let B Ď rns. Then NCnpB, ¨q is isomorphic to the
direct product of the subposets FixpNCnpBqq and MovepNCnpB, ¨qq.

Proof. Since FixB and MoveB are order-preserving maps on NCnpB, ¨q, the
map which sends π to the element

pFixBpπq,MoveBpπqq P FixpNCnpBqq ˆMovepNCnpB, ¨qq

is order-preserving as well.
Suppose that FixBpπq “ FixBpπ1q and MoveBpπq “ MoveBpπ1q. Then

by definition of MoveB we have

FixBpδπq
´1δπ “ FixBpδπ1q

´1δπ1

and thus δπ “ δπ1 , so the map is injective.
To see surjectivity, let π P FixpNCnpBqq and π1 P MovepNCnpB, ¨qq be

arbitrary and let β “ δπδπ1 . Note that in the partial order on Braidn
obtained by extending that of NCn,

β “ FixBpδπqMoveBpδπ1q

ď FixBpδnqMoveBpδnq

ď δn

and thus β is a dual simple braid. Then

FixBpβq “ FixBpδπqFix
Bpδπ1q “ FixBpδπq “ δπ

by Lemma 12.7(5), Lemma 12.15 and Lemma 12.7(4), showing also that
MoveBpβq “ δπ1 .
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It remains to see that incomparable elements are mapped to incomparable
elements. So suppose π and π1 have the property that FixBpπq ď FixBpπ1q
and MoveBpπq ďMoveBpπ1q. Then

δπ “ FixBpδπqMoveBpδπq

ď FixBpδπ1qMoveBpδπq

ď FixBpδπ1qMoveBpδπ1q

ď δπ1

by Proposition 3.7, so π and π1 are comparable as well. �

We close by proving the following extension of Lemma 12.15.

Lemma 12.17. Let B Ĺ rns. An element β PMovepDSnpB, ¨qq is uniquely
determined by the tuple pwbpβqqbPB. In particular, MovepDSnpB,B

1qq con-
tains at most one element.

Proof. Suppose δπ and δπ1 are dual simple braids in DSnpB, ¨q with the
property that wδπpb, ¨q “ wδπ1 pb, ¨q for each b P B. Each wrapping number
is either 0 or 1, and these can be characterized within π and π1 by the
fact that for each b P B, either tbu is a singleton or b and b ` 1 (modulo
n) share a block. This property is preserved under common refinement,
so δπ^π1 has the same B-indexed wrapping numbers as δπ and δπ1 . By
definition, δπ^π1 ď δπ and δπ^π1 ď δπ1 , and we know by Lemma 12.12(2) that
MoveBpδπ^π1q ď MoveBpδπq and MoveBpδπ^π1q ď MoveBpδπ1q. Finally,
since all three of these braids have the same B-indexed wrapping numbers,
we may conclude by Lemma 12.12(1) that

MoveBpδπq “MoveBpδπ^π1q “MoveBpδπ1q

and we are done. �

13. The Complex of Boundary Braids

In this section, we describe the subcomplex of the dual braid complex which
is determined by the set of boundary braids.

Definition 13.1 (Complex of boundary braids). Let B Ď rns. The complex
of pB, ¨q-boundary braids, denoted CplxpBraidnpB, ¨qq, is the full subcom-
plex of CplxpBraidnq supported on BraidnpB, ¨q.

The boundary strands of a pB, ¨q-boundary braid define a path in the config-
uration space of |B| points in BP . The following lemma is the combinatorial
version of this statement. Recall from Definition 6.6 that we regard the
edges of CplxpBraidnpB, ¨qq as labeled by elements of NC˚n. Note also that
the edge from β P BraidnpB,B

1q to β1 P BraidnpB,B
2q carries a label in

NCnpB
1, B2q.
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Lemma 13.2. Let B Ď rns. There is a surjective map

bdryB : CplxpBraidnpB, ¨qq Ñ UConf|B|pΓn,mq

that takes β P BraidnpB,B
1q to B1.

Proof. Let β P BraidnpB,B
1q. An edge out of β labeled π P NCnpB

1, ¨q is
taken to the edge of UConf|B|pΓn,mq out of B1 that keeps b P B1 fixed if it
forms a singleton block of π and that moves it to b ` 1 if it does not. The
(boundary partition) condition that b and b` 1 share a block of π for every
b P B1 ensures that this is compatible with how vertices are mapped. It also
ensures that if b ` 1 P B as well, then b ` 1 also moves, and so the edge
actually exists in UConf|B|pΓn,mq.

To verify surjectivity we show that for any edge e from B1 to B2 in
UConf|B|pΓn,mq and any β P BraidnpB,B

1q there does in fact exist a
π P NCnpB

1, B2q such that the edge out of β labeled π is taken to e. If B “
B1 “ rns this is achieved by the maximal element π “ trnsu. Otherwise the
fact that the edge e exists means that for every interval ti, . . . , ju (modulo n)
of B either that same interval or the interval ti` 1, . . . , j` 1u is in B1. The
needed partition π is the one whose non-singleton blocks are the intervals
ti, . . . , j ` 1u where the second possibility happens. �

Our goal is to show that bdryB is in fact a trivial bundle. To do so, we
use the local decomposition results from Section 12 to obtain a splitting.
More precisely, we want to construct a map splitB that makes the diagram

(13.1)

ČUConf|B|pΓn,mq CplxpBraidnpB, ¨qq

UConf|B|pΓn,mq

bdryB

splitB

cov

commute (where cov denotes the covering map).

Lemma 13.3. The map splitB in (13.1) exists. It is characterized (modulo
deck transformations) by the property that if an edge in its image is labeled

by π P NCnpB
1, ¨q then MoveB

1

pπq “ π.

Proof. We will use the shorthands ČUConf, UConf and Cplx. Suppose

there is an edge from V 1 to V 2 in ČUConf. Under cov it maps to an
edge from B1 to B2 in UConf. If β1 is a vertex above B1 (with respect to
bdryB) then any vertex β2 “ β1δπ with π P NCnpB

1, B2q has the property
that bdryBpβ2q “ B2. Our characterization states that if β1 “ splitBpV 1q

then splitBpV 2q should be the β2 with π PMoveB
1

pNCnpB
1, B2qq, which is

unique by Lemma 12.17. Similarly, if splitBpV 2q has already been defined,
this uniquely characterizes splitBpV 1q.
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If we choose a base vertex V0 P ČUConf above B, declare that splitBpV0q

is the vertex labeled by the identity braid, and extend the definition accord-

ing to the above rule, we get a map that is defined everywhere since ČUConf
is connected (by edge paths).

It remains to see that this map is well-defined, i.e. that extensions along

different edge paths agree. Since ČUConf is simply connected, it suffices to
check this along 2-simplices. This amounts to the requirement that if β P
BraidnpB,B

1q, δπ1 PMoveB
1

pDSnpB
1, B2qq and δπ2 PMoveB

2

pDSnpB
2, ¨qq

are such that δπ1δπ2 P DSnpB
1, ¨q then MoveB

1

pδπ1δπ2q “ δπ1δπ2 . This is true
by Lemma 12.13. �

Definition 13.4 (Move complex). Let B Ď rns. We denote the image of
splitB by CplxpMovenpB, ¨qq and call it the move complex associated to
B. Its vertex set is denoted MovenpB, ¨q.

Corollary 13.5. Let B Ď rns. The corestriction of split to the move
complex CplxpMovenpB, ¨qq is an isomorphism. In particular, the move
complex is a CATp0q subcomplex of the dual braid complex.

Proof. The corestriction of split to CplxpMovenpB, ¨qq is a covering map
by Lemma 13.3. We need to show that it is injective. To see this, recall from

Proposition 10.3 that ČUConf|B|pΓn,mq is isomorphic to a dilated column.
Let pb1, . . . , bkq with 0 ă b1 ă . . . ă bk ă n be a basepoint above B in the
dilated column. Note that the edge from pb1, . . . , bkq to pb1`ε1, . . . , bk`εkq,
with pεiqi P t0, 1u

k is taken by split to a pB, ¨q-boundary braid with wrap-
ping numbers pε1, . . . , εkq. It follows more generally that coordinates of the
dilated column relative to the basepoint correspond to wrapping numbers.
In particular, split is injective. �

If we develop the image of FixB in a similar way to how we just developed
MoveB, we encounter a familiar structure.

Definition 13.6 (Fix complex). The fix complex CplxpFixnpBqq is the full
subcomplex of CplxpBraidnq supported on FixnpBq.

Note that FixnpBq is a parabolic subgroup and CplxpFixnpBqq is an iso-
morphic copy of CplxpBraidn´|B|q. The fix complex does indeed relate to
the decomposition of NCnpB, ¨q in a similar way as the move complex:

Lemma 13.7. The edges out of β P FixnpBq that lie in CplxpFixnpBqq
are precisely those labeled by elements of FixpNCnpBqq. In particular, the
fiber of bdryB over B1 is a union over translates of CplxpFixnpB

1qq.

Proof. The first claim is just Lemma 12.8. For the second claim note that the
edges out of β P BraidnpB,B

1q that are collapsed to a point are precisely

those labeled by FixB
1

pNCnpB
1, ¨qq. Thus the fiber of bdryB over B1 is the

union over the βFixnpB
1q for β P BraidnpB,B

1q. �
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Proposition 13.8. Let B,B1 Ď rns and let β P BraidnpB,B
1q be ar-

bitrary. There are unique braids FixBpβq P FixnpBq and MoveBpβq P
MovenpB,B

1q such that

β “ FixBpβqMoveBpβq.

Moreover,

(1) MoveBpMoveBpβqq “MoveBpβq

(2) MoveBpβq´1 “MoveB
1

pβ´1q

(3) if β1 P BraidnpB
1, ¨q then Movenpββ

1q “MoveBn pβqMoveB
1

n pβ
1q.

Remark 13.9. Note that by Lemma 13.3 and Lemma 13.7 the braids
FixBpβq and MoveBpβq coincide with the definitions in Section 12 if β P
DSnpB, ¨q.

Proof. Uniqueness amounts to the statement that FixnpBqXMovenpB, ¨q “
t1u, which follows from Corollary 13.5.

Let β P BraidnpB,B
1q. To define MoveBpβq, consider the diagram

(13.1) and let V P ČUConf|B|pΓn,mq be the base vertex with splitBpV q “ 1.

Let p be an edge path from 1 to β in CplxpBraidnpB, ¨qq, let q “ bdryBppq
and let q̃ be the path starting in V and covering q. We take MoveBpβq to be
the endpoint of q. The properties (2) and (3) follow from the corresponding
properties of paths. Commutativity of (13.1) shows that if we did the same
construction with β replaced by MoveBpβq, we would again end up at
MoveBpβq, thus proving (1).

Putting FixBpβq “ βMoveBpβq´1 it remains to verify that FixBpβq P
FixnpBq. We compute

MovepFixBpβqq “MoveBpβqMoveB
1

pMoveBpβq´1q

“MoveBpβqMoveBpMoveBpβqq´1

“MoveBpβqMoveBpβq´1

“ 1.

This means that a path from 1 to FixBpβq is mapped to a null-homotopic
path in the complex UConf|B|pΓn,mq. Thus FixBpβq lies in the same

component of the fiber of bdryB over B as 1, which by Lemma 13.7 is
FixnpBq. �

Lemma 13.10. If β P BraidnpB,B
1q and β1 P BraidnpB

1, ¨q then

FixBpββ1q “ FixBpβqFixB
1

pβ1qMoveBpβq´1
,

where we use the shorthand xy to mean the conjugation y´1xy.
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Proof. By Proposition 13.8 we have on one hand

ββ1 “ FixBpββ1qMoveBpββ1q “ FixBpββ1qMoveBpβqMoveB
1

pβ1q,

and on the other hand

ββ1 “ FixBpβqMoveBpβqFixB
1

pβ1qMoveB
1

pβ1q.

Solving for FixBpββ1q proves the claim. �

We are now ready to prove the main result of this article.

Theorem 13.11. Let B Ď rns. The map

ϕ : BraidnpB, ¨q Ñ FixnpBq ˆMovenpB, ¨q

β ÞÑ pFixBpβq,MoveBpβqq

induces an isomorphism of orthoscheme complexes

CplxpBraidnpB, ¨qq – CplxpFixnpBqq ⧄CplxpMovenpB, ¨qq

which is, in particular, an isometry.

Proof. The map ϕ is a bijection by Proposition 13.8.
For each β P BraidnpB,B

1q, we may restrict the domain of ϕ to the sub-
complex of simplices in CplxpBraidnpB, ¨qq with minimum vertex β and
the image of ϕ to the subcomplex of simplices in the orthoscheme prod-
uct CplxpFixnpBqq⧄CplxpMovenpB, ¨qq with minimum vertex labeled by
pFixBpβq,MoveBpβqq. It suffices for us to show that this restriction of ϕ
is an isomorphism of orthoscheme complexes, and since both complexes are
flag complexes, we need only check this on the 1-skeleton.

The edges leaving β are parametrized by NCnpB
1, ¨q, which by Proposi-

tion 12.16 is isomorphic to

(13.2) FixB
1

pNCnpB
1, ¨qq ˆMoveB

1

pNCnpB
1, ¨qq.

The edges out of pFixBpβq,MoveBpβqq are parametrized by

(13.3) FixBpNCnpB, ¨qq ˆMoveB
1

pNCnpB
1, ¨qq.

Recall that for each π P NCnpB
1, ¨q, we have

MoveBpβδπq “MoveBpβqMoveB
1

pδπq

by Proposition 13.8 and

FixBpβδπq “ FixBpβqFixB
1

pδπq
MoveBpβq´1

.

by Lemma 13.10. This shows that ϕ indeed induces an isomorphism between
the posets (13.2) and (13.3), namely it is the identity on the second factor
and conjugation by MoveBpβq on the first. Since these posets are isomor-
phic, the given restriction of ϕ is an isomorphism of orthoscheme complexes
and by Proposition 7.10, this isomorphism is an isometry. �
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Corollary 13.12. Let B Ď rns. If CplxpBraidn´|B|q is CATp0q then
CplxpBraidnpB, ¨qq is CATp0q as well.

Proof. By Theorem 13.11, CplxpBraidnpB, ¨qq is isomorphic to the metric
direct product of CplxpFixnpBqq, which is isomorphic to the dual braid
complex CplxpBraidn´|B|q, and CplxpMovenpB, ¨qq, which is CATp0q by
Corollary 13.5. The claim therefore follows from [BH99, Exercise II.1.16(2)].

�

14. The Groupoid of Boundary Braids

We close with a more algebraic view on the results of the last section. We
refer the reader to [Hig71, Chapter 12] and [DDG`15, Chapter II] for basic
background on groupoids.

Definition 14.1. The groupoid of boundary braids has as objects the finite
subsets of rns. The morphisms from B to B1 are BraidnpB,B

1q if |B| “ |B1|
and empty otherwise. Composition is composition of braids.

Remark 14.2. To be precise one should say that morphisms are represented
by boundary braids as a braid may at the same time be a pB,B1q-boundary
braid and a pC,C 1q-boundary braid thus represent two different morphisms.
Since a morphism is uniquely determined by the braid and either its source
or its target, we trust that no confusion will arise from this imprecision.

Parabolic subgroups form a subgroupoid in a trivial way.

Definition 14.3. The groupoid of fix braids has as its objects the finite
subsets of rns. The morphisms from B to B1 are FixnpBq if B “ B1 and are
empty otherwise.

The groupoid of fix braids is normal in the following sense.

Lemma 14.4. If β P BraidnpB,B
1q and β1 P FixnpBq then β´1β1β P

FixnpB
1q.

Proof. Note that if β is a pb, b1q-boundary braid then wβpbq “ ´wβ´1pb1q.
The claim now follows from Lemma 11.4 and Lemma 11.5. �

The corresponding quotient morphism is the map bdryB from Lemma 13.2
that takes a pB,B1q-boundary braid to a pB,B1q-path in the fundamental
groupoid of UConf|B|pΓn,mq. The upshot of the last section is that this
map splits with image move braids.

Definition 14.5. The groupoid of move braids has objects finite subsets of
rns. The morphisms from B to B1 are the braids MovenpB,B

1q, which are
images under splitB of pB,B1q-paths.
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It follows from Proposition 13.8(2) and (3) that this is indeed a subgroupoid.
Now the algebraic conclusion can be formulated as follows, see [Wit, Sec-
tion 4] for a discussion of semidirect products.

Theorem 14.6. The groupoid Braidnp¨, ¨q is a semidirect product

Fixnp¨q ¸Movenp¨, ¨q.

Specifically,

(1) every β P BraidnpB,B
1q decomposes uniquely as β “ ϕµ with ϕ P

FixnpBq and µ PMovenpB,B
1q;

(2) if ϕµ “ µ1ϕ1 with µ, µ1 P MovenpB,B
1q, ϕ P FixnpBq and ϕ1 P

FixnpB
1q then µ “ µ1.

Proof. The first statement is Proposition 13.8. For the second note that
bdryBpϕµq “ bdryBpµ1ϕ1q since elements of Fixnp¨q are mapped trivially
under bdryB. It follows that MoveBpµ1ϕ1q “MoveBpϕµq “ µ. �
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