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BOUNDARY BRAIDS

MICHAEL DOUGHERTY, JON MCCAMMOND, AND STEFAN WITZEL

ABSTRACT. The n-strand braid group can be defined as the fundamen-
tal group of the configuration space of n unlabeled points in a closed
disk based at a configuration where all n points lie in the boundary of
the disk. Using this definition, the subset of braids that have a repre-
sentative where a specified subset of these points remain pointwise fixed
forms a subgroup isomorphic to a braid group with fewer strands. In
this article, we generalize this phenomenon by introducing the notion of
boundary braids. A boundary braid is a braid that has a representative
where some specified subset of the points remains in the boundary cy-
cle of the disk. Although boundary braids merely form a subgroupoid
rather than a subgroup, they play an interesting geometric role in the
piecewise Euclidean dual braid complex defined by Tom Brady and the
second author. We prove several theorems in this setting, including the
fact that the subcomplex of the dual braid complex determined by a
specified set of boundary braids metrically splits as the direct metric
product of a Euclidean polyhedron and a dual braid complex of smaller
rank.

Braids and braid groups play an important role throughout mathematics,
in part because of the multiple ways in which they can be described. In
this article we view the n-strand braid group BRAID,, as the fundamental
group of the unordered configuration space of n distinct points in the closed
unit disk D, based at an initial configuration P where all n points lie in
the boundary of . Requiring the points indexed by B < {1,...,n} to
remain fixed defines a parabolic subgroup FiX,(B) which is isomorphic to
BRAID,,_p|.

We introduce an extension of this idea. A (B,-)-boundary braid is a
braid that has a representative where the points indexed by B remain in
the boundary of the disk but need not be fixed (see Definition [2.13). Our
first main result is that the subgroup F1x,,(B) has a canonical complement
MOVE, (B, ) in the set BRAID, (B, ") of (B,-)-boundary braids that gives
rise to a unique decomposition (see Section :

Theorem A. Let B < {1,...,n} and let B be a (B,-)-boundary braid in
BRAID,,. Then there are unique braids F1xP(B) in F1x,(B) and Move?(3)
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in MOVE, (B, ) such that
B = FixB(B)Move?(3).

We call the elements of FI1X,,(B) fix braids and the elements of MOVE,, (B, -)
move braids.

Associated to the braid group BRAID,, is the dual braid complex, intro-
duced by Tom Brady [Bra0l] and denoted CPLX(BRAID,). It is a con-
tractible simplicial complex on which BRAID,, acts freely and cocompactly.
Brady and the second author equipped CPLX(BRAID,,) with a piecewise Eu-
clidean orthoscheme metric and conjectured that it is CAT(0) with respect
to this metric [BMI0]. They verified the conjecture for n < 6 and Haet-
tel, Kielak and Schwer proved it for n = 6 [HKS16]. We are interested
in boundary braids as an approach to proving the conjecture. The sets of
boundary braids, fix braids, and move braids have induced subcomplexes in
CpLX(BRAID,,) with the following metric decomposition.

Theorem B. Let B < {1,...,n}. The complex of (B,-)-boundary braids
decomposes as a metric direct product

CprLX(BRAID,(B,-)) =~ CrPLX(F1x,(B)) x CPLX(MOVE,(B,")).

The complex CPLX(MOVE,(B,-)) is R times a Fuclidean simplex and there-
fore CAT(0). In particular, CPLX(BRAID,(B,-)) is CAT(0) if and only
if the smaller dual braid complex CPLX(F1X,(B)) = CPLX(BRAID,_ p|) is
CAT(0).

As part of our proof for Theorem [B] we introduce a new type of configuration
space for directed graphs and the broader setting of A-complexes. We refer
to these as orthoscheme configuration spaces and explore their geometry for
the case of oriented n-cycles. The other key element for proving Theorem
is a combinatorial study of noncrossing partitions associated to boundary
braids.

Because the points indexed by B do not necessarily return to their original
positions, either pointwise or as a set, boundary braids form a subgroupoid
rather than a subgroup. More precisely, if we refer to a boundary braid
where the points indexed by B move in the boundary to end at points
indexed by B’, then we see that a (B, B’)-boundary braid can be com-
posed with a (B’, B”)-boundary braid to produce a (B, B”)-boundary braid.
The groupoid BRAID, (-, -) of boundary braids has subgroupoids Fix,,(-) and
MOVE,(-,-) consisting of fix braids and move braids respectively. We prove
the following algebraic result (see Section .

Theorem C. The groupoid of boundary braids decomposes as a semidirect
product
BRAID,(+, ) = F1X,(-) x MOVE, (-, -).

The article is organized as follows. The first part, Sections [I] through [4]
develops standard material about braid groups and their dual Garside struc-
ture in a way that suits our later applications. The second part, Sections
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through [8] is concerned with complexes of ordered simplices. Specifically we
show how to equip them with an orthoscheme metric and that a combina-
torial direct product gives rise to a metric direct product. The final part,
Sections [9] through contains our work on boundary braids and the proofs
of the main theorems.

Part 1. Braids

Braids can be described in a variety of ways. In this part we establish
the conventions used throughout the article, review basic facts about dual
simple braids and the dual presentation for the braid group, and introduce
the concept of a boundary braid.

1. BRAID GROUPS

In this article, braid groups are viewed as fundamental groups of certain
configuration spaces.

Definition 1.1 (Configuration spaces). Let X be a topological space, let n
be a positive integer and let X™ denote the product of n copies of X whose
elements are n-tuples & = (x1,x9,...,x,) of elements x; € X. Alternatively,
the elements of X™ can be thought of as functions from [n] to X where
[n] is the set {1,2,...,n}. The configuration space of n labeled points in X
is the subspace CONF,(X) of X™ of n-tuples with distinct entries, i.e. the
subspace of injective functions. The thick diagonal of X™ is the subspace
DIAG,(X) = {(z1,...,2n) | ; = x; for some ¢ # j} where this condition
fails. Thus CONF,(X) = X" — DI1AG,(X). The symmetric group acts
on X" by permuting coordinates and this action restricts to a free action
on CONF,(X). The configuration space of n unlabeled points in X is the
quotient space UCONF,,(X) = (X™ — DIAG,(X))/SYM,,. Since the quotient
map sends the n-tuple (x1,...,2,) to the n-element set {xi,...,x,}, we
write SET: CONF,,(X) — UCONF,(X) for this natural quotient map.

Since the topology of a configuration space only depends on the topology of
the original space, the following lemma is immediate.

Lemma 1.2 (Homeomorphisms). A homeomorphism X — Y induces a
homeomorphism h: UCONF,(X) — UCONF,(Y). In particular, for any
choice of basepoint = in UCONF,(X), there is an induced isomorphism

m1(UCONF,(X), *) = m (UCONF,(Y), h(x)).

Example 1.3 (Configuration spaces). When X is the unit circle and n =
2, the space X? is a torus, DiAGo(X) is a (1,1)-curve on the torus, its
complement CONF2(X) is homeomorphic to the interior of an annulus and
the quotient UCONF2(X) is homeomorphic to the interior of a Mdbius band.
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Definition 1.4 (Braids in C). Let C be the complex numbers with its
usual topology and let Z' = (21, 22, ..., 2,) denote a point in C™. The thick
diagonal of C" is a union of hyperplanes H;j, with i < j € [n], called the
braid arrangement, where H;; is the hyperplane defined by the equation
z; = zj. The configuration space CONF,(C) is the complement of the braid
arrangement and its fundamental group is called the n-strand pure braid
group. The n-strand braid group is the fundamental group of the quotient
configuration space UCONF,(C) = CoNF,(C)/SyM,, of n unlabeled points.
In symbols

PBRAID,, = 7 (ConNF,(C),2) and Braip, = 71 (UCONF,(C), Z)

where Z' is some specified basepoint in CONF,(C) and Z = SET(Z?) is the
corresponding basepoint in UCONF,(C).

Remark 1.5 (Short exact sequence). The quotient map SET is a cover-
ing map, so the induced map SET,: PBRAID,, — BRAID,, on fundamental
groups is injective. In fact, CONF,(C) is a regular cover of UCONF,(C),
so the subgroup SET,(PBRAID,) c BRAID,, is a normal subgroup and the
quotient group BRAID,,/SET.(PBRAID,,) is isomorphic to the group Sym,,
of covering transformations. The quotient map sends each braid to the per-
mutation it induces on the n-element set used as the basepoint of BRAID,,,
a map we define more precisely in the next section. We call this map PERM.
These maps form a short exact sequence

SET PERM
(1.1) PBRAID,, < BRAID,, — SYM,,.

Example 1.6 (n < 2). When n = 1 the spaces UCONF;(C), ConF;(C)
and C are equal and contractible, and all three groups in Equation [L.1] are
trivial. When n = 2 the space CONFo(C) is C? minus a copy of C!, which
retracts first to C! — C° and then to the circle S! of unit length complex
numbers. The quotient space UCONF3(C) also deformation retracts to S!
and the map from CONF3(C) to UCONF,(C) corresponds to the map from
S! to itself sending z to z?. In particular PBRAID; >~ BRAIDy =~ Z and SET,
is the map that multiplies by 2 with quotient Z/2Z =~ SyMs.

Convention 1.7 (n > 2). For the remainder of the article, we assume that
the integer n is greater than 2, unless we explicitly state otherwise.

Let D < C be the closed unit disk centered at the origin. Restricting to
configurations of points that remain in D does not change the fundamental
group of the configuration space.

Proposition 1.8 (Braids in D). The configuration space UCONF,,(C) defor-
mation retracts to the subspace UCONF, (D), so for any choice of basepoint
Z in the subspace, 71 (UCONF, (D), Z) = m1(UCONF,(C), Z) = BRAID,,.
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FiGURE 1. The figure on the left shows the standard base-
point P = {p1,p2,...,p9} and the standard disk D for n = 9.
The figure on the right shows the standard subdisks D4 for
A equal to {1,2,6,9}, {3,5} and {7,8}.

Proof. Let m(2) = max{l, |z1],...,|zn|} for each Z = (21,...,2,) € C" and
note that m defines a continuous map from CoNF,,(C) to R>;. The straight-
line homotopy from the identity map on CONF,,(C) to the map that sends z’
to m—%g)é’ is a deformation retraction from CONF,(C) to CONF,,(D) and since

m(Z) only depends on the entries of Z'and not their order, this deformation
retraction descends to one from UCONF,(C) to UCONF, (D). O

The following result combines Lemma [1.2| and Proposition [1.8

Corollary 1.9 (Braids in D). A homeomorphism D — D induces a home-
omorphism of configuration spaces h: UCONF, (D) — UCONF, (D). In par-
ticular, for any choice of basepoint Z in UCONF, (D), there is an induced
isomorphism w1 (UCONF, (D), Z) = 71 (UCONF, (D), h(Z)) = BRAID,,.

Remark 1.10 (Points in dD). When BRAID,, is viewed as the mapping
class group of an n-times punctured disk, the punctures are not allowed to
move into the boundary of the disk since doing so would alter the topological
type of the punctured space. When BRAID,, is viewed as the fundamental
group of a configuration space of points in a closed disk, points are allowed
in the boundary and we make extensive use of this extra flexibility.

We have a preferred choice of basepoint and disk for BRAID,,.

Definition 1.11 (Basepoints and disks). Let ¢ = ¢2™/™ € C be the standard
primitive n-th root of unity and let p; be the point ¢’ for all i € Z. Since
("™ = 1, the subscript ¢ should be interpreted as an integer representing
the equivalence class i + nZ € Z/nZ. In particular, we consider p;_, =
Di = Pitn = Piron without further comment. The standard basepoint for
PBRAID,, is the n-tuple p = (p1,p2,...,pn) and the standard basepoint for
BRAID,, is the n-element set P = SET(p) = {p1,p2,-..,pn} of all n-th roots of
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unity. Let D be the convex hull of the points in P. Our standing assumption
of n > 2 means that D is homeomorphic to the disk ID. We call D the
standard disk for BRAID,,. See Figure

Remark 1.12 (Braid groups). By Corollary the braid group BRAID,,
is isomorphic to m (UCONF, (D), P), the fundamental group of the config-
uration space of n unlabeled points in the standard disk D based at the
standard basepoint P. In the remainder of the article, we use the notation
BRAID,, to refer to the specific group 71 (UCONF, (D), P).

2. INDIVIDUAL BRAIDS

This section establishes our conventions for describing individual braids and
we introduce the concept of a boundary braid.

Definition 2.1 (Representatives). Each braid a € BRAID,, is a basepoint-
preserving homotopy class of a path f: [0,1] — UCONF, (D, P) that de-
scribes a loop based at the standard basepoint P. We write o = [f] and say
that the loop f represents a. We use Greek letters such as «, § and § for
braids and Roman letters such as f, g and h for their representatives.

Vertical drawings of braids in R? typically have the ¢ = 0 start at the top
and the t = 1 end at the bottom. See Definition 2.3] for the details. As a
mnemonic, we use superscripts for information about the start of a braid or
a path and subscripts for information about its end.

Definition 2.2 (Strands). Let w € BRAID,, be a braid with representative
f- A strand of f is a path in D that follows what happens to one of the
vertices in P. There are two natural ways to name strands: by where
they start and by where they end. The strand that starts at p; is the path
f%:[0,1] — D defined by the composition f* = PROJZOfp where the map fp
is the unique lift of the path f through the covering map SET : CONF, (D) —
UCONF, (D) so that the lifted path starts at p, i.e. fp( ) = p, and PROJ; :
CONF,, (D) — D is projection onto the i-th coordinate. Similarly the strand
that ends at p; is the path f;: [0,1] — D defined by the composition f; =
PROJ;© fp where fp is the unique lift of the path f through the covering map
SET: CONF,,(D) — UCONF, (D) that ends at p, i.e. fp( ) = p. When the
strand of f that starts at p; ends at p; the path f? is the same as the path
fi. We write f%, f; or f; for this path and we call it the (i, -)-strand, the
(+,4)-strand or the (i, j)-strand of f depending on the information specified.

A braid representative is drawn by superimposing the graphs of its strands.

Definition 2.3 (Drawings). Let a € BRAID,, be a braid with representative
f. A drawing of f is formed by superimposing the graphs of its strands inside
the polygonal prism [0, 1] x D. There are two distinct conventional embed-
dings of this prism into R3. The complex plane containing D is identified
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with either the first two or the last two coordinates of R? and the remaining
coordinate indicates the value t € [0, 1] with the ¢-dependence arranged so
that the t = 0 start of f is on the left or at the top and the ¢ = 1 end of f is on
the right or at the bottom. In the left-to-right orientation, for each j € [n],
for each tg € [0, 1] and for each point f;(tg) = 20 = xo + iyo € D < C on the
(-,7)-strand we draw the point (¢g, o, 7o) € R3. In the top-to-bottom orien-
tation, the same point on the (-, j)-strand is drawn at (zo,%o, 1 — to) € R3.

Definition 2.4 (Multiplication). Let a; and ag be braids in BRAID,, with
representatives fi and f. The product o - oz is defined to be [ f1.f2] where
f1.f2 is the concatenation of f; and fo. In the drawing of fi.fs the drawing
of fi is on the top or left of the drawing of fo which is on the bottom or
right. See Figure

Definition 2.5 (Permutations). A permutation of the set [n] is a bijective
correspondence between a left /top copy of [n] and a right/bottom copy of
[n]. Permutations are compactly described in disjoint cycle notation. A
cycle such as (1 2 3), for example, means that 1 on the left corresponds to
2 on the right, 2 on the left corresponds to 3 on the right, and 3 on the left
corresponds to 1 on the right. Multiplication of permutations is performed
by concatenating the correspondences left-to-right or top-to-bottom. The
permutation 7 of [n] acts on [n] from either the left or the right by following
the correspondence: if 7 on the left corresponds to j on the right, then i-7 = j
andi=7-].

Definition 2.6 (Permutation of a braid). The permutation of a braid « is
the bijective correspondence of [n] under which ¢ on the left corresponds
to j on the right if o has an (i, j)-strand. Note that the function PERM(«v)
only depends on the braid « and not on the representative f. The direction
of the bijection PERM(«) is defined so that it is compatible with function
composition, i.e. so that PERM(aq - ag) = PERM(v1) 0 PERM(r2).

Information about how a braid permutes its strands can be be used to
distinguish different types of braids.

Definition 2.7 ((i, j)-braids). Let o € BRAID,, be a braid with permutation
g = PERM(«). We say that « is an (4, j)-braid if the strand that starts at p;
ends at p;. In other words, « is an (4, j)-braid if and only if g(j) = . When
« is an (4, j)-braid and S is a (j, k)-braid, v = « - 8 is a (i, k)-braid and the
inverse of a is a (j,)-braid.

For our applications, we make use of a generating set for the braid group
which is built out of braids we call rotation braids. Rotation braids are
defined using special subsets of our standard basepoint P and subspaces of
our standard disk D.

Definition 2.8 (Subsets of P). For each non-empty A < [n] of size k,
we define P4 = {p; | i € A} < P to be the subset of points indexed by the
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numbers in A. In this notation our original set P is F},,. Using this notation
we can extend the notion of an (i,7)-braid. Let A and B be two subsets
of [n] of the same size and let @ € BRAID,, be a braid with permutation
g = PERM(«). We say that « is an (A, B)-braid if every strand that starts
in Py, ends in Ppg, i.e. if and only if g(B) = A.

Definition 2.9 (Subdisks of D). For all distinct ¢,j € [n] let the edge e;;
be the straight line segment connecting p; and p;. For k > 2, let D4 be
CONV(Py), the convex hull of the points in P4 and note that D4 is a k-gon
homeomorphic to D. We call this the standard subdisk for A < [n]. In this
notation, our original disk D is Dy,). For k = 2 and A = {i, j}, we define
D4 so that it is also a topological disk. Concretely, we take two copies of
the path along the edge e = ¢;; from p; to p; and then bend one or both of
these copies so that they become injective paths from p; to p; with disjoint
interiors which together bound a bigon inside of D. Moreover, when the
edge e lies in the boundary of D we require that one of the two paths does
not move so that e itself is part of the boundary of the bigon. See Figure
For k = 1, we define D4 to be the single point p; € P4, but note that this
subspace is not a subdisk. The bending of the edges to form the bigons
are chosen to be slight enough so that for all A and B < [n] the standard
disks D4 and Dp intersect if and only if the convex hulls CoONV(P4) and
CoNV(Pg) intersect.

We view the boundaries of these subdisks as directed graphs.

Definition 2.10 (Boundary edges). When A has more than 1 element,
we view 0D 4, the topological boundary of the subdisk D4, as having the
structure of a directed graph. The vertex set is P4 and for every vertex p; in
P4 there is a directed edge that starts p;, proceeds along 0D 4 in a counter-
clockwise direction with respect to the interior of Dy, and ends at the next
vertex in P4 that it encounters. The edges of the graph 0D 4 are called the
boundary edges of D4. Note that edges and boundary edges are distinct
concepts. An edge is unoriented and necessarily straight. A boundary edge
is directed, it belong to the boundary of a specific subdisk D4 and the path
it describes might curve.

Definition 2.11 (Rotation braids). For A < [n] of size k = |A| > 1 we
define an element § 4 € BRAID,, that we call the rotation braid of the vertices
in Pa. It is the braid represented by the path in UCONF, (D) that fixes
the vertices in P — P4 and where every vertex p; € P4 travels in a counter-
clockwise direction along the oriented edge in the directed graph ¢Dj4 to
the next vertex it encounters. If f is any representative of § 4 satisfying this
description, we call f a standard representative of § 4.

When A = [n] we write § instead of Jf,) and when A has only a single
element we let 04 denote the identity element in BRAID,,. If A = {i,j} and
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a1 = 5{1,5,6}

a2 = 0f2,3.45}

FIGURE 2. A drawing of ;- where a1 = d4, and aia = 4,
are rotations with A; = {1,5,6} and Az = {2,3,4,5}.

e = e;; is the edge connecting p; and p;, then we sometimes write J, to mean
04, the rotation of p; and p; around the boundary of the bigon D,4. Note
that if A = {i1,i2,...,ix} < [n] and i1 < ia < -+ < iy is the natural linear
order of its elements, then the bijection PERM(J4) is equal to the k-cycle
(ilai% cee 7Zk’)

Example 2.12 (Rotation braids). Figure [2|shows a drawing of the product
of two rotation braids in BRAIDg. The top braid «; is the rotation 4, with
Ay ={1,5,6} and PERM(c1) = (1 5 6). The bottom braid a3 is the rotation
braid 64, with Ay = {2,3,4,5} and PERM(a2) = (2 3 4 5). The product
braid a = aj - a2 is the rotation braid § of all 6 vertices with PERM(«) =
PERM(cv1 - ag) = PERM(a1) o PERM(ap) = (1 56)(2345)=(123456).

In this article, we focus on whether or not particular strands pass through
the interior of the polygonal disk D. Those that remain in the boundary of
D are called boundary strands.

Definition 2.13 (Boundary braids). Let f be a representative of an (i, j)-
braid o € BRAID,,. If the (i, j)-strand of f remains in the boundary 0D,
then it is a boundary strand of f and a boundary parallel strand of o. The
linguistic shift from “boundary” to “boundary parallel” reflects the fact that
while for many representatives of a, the (7, j)-strand will not remain in the
boundary, it will always remain parallel to the boundary in a sense that can
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be made precise. When « has some representative in which its (4, j)-strand
is a boundary strand, « is called a (i, j)-boundary braid. More generally,
suppose « is an (B, (C)-braid and there is a representative f of « so that
every strand that starts in Pp is a boundary strand of f. We then call « an
(B, C)-boundary braid.

Note that the definition of an (B, C')-boundary braid requires a single repre-
sentative where all of these strands remain in 0D. We will see in Section [11]
that such a representative exists as soon as there are representatives which
keep the (i,-)-strand in the boundary for each i € B.

Example 2.14 (Boundary braids). In Figure [2| the rotation braid as =
da, € BRAIDg with As = {2,3,4,5} is an (Ag, As)-braid but it is not an
(A, Ag)-boundary braid since the (5,2)-strand passes through the interior
of D. Tt is, however, a (B, C)-boundary braid with B = {1,2,3,4,6} and
C ={1,3,4,5,6} since all five of the corresponding strands, i.e. the (1,1),
(2,3), (3,4), (4,5) and (6,6) strands, remain in the boundary of D in its
standard representative.

3. DuaL SIMPLE BRAIDS

This section defines dual simple braids and the dual presentation of the braid
group using the rotation braids from the previous section. We begin with the
combinatorics of the noncrossing partition lattice. Recall that P = P, < C
denotes the set of n-th roots of unity.

Definition 3.1 (Noncrossing partitions). A partition 7 = {A;,..., Ax} of
the set [n] is noncrossing when the convex hulls CONV(Py, ), ..., CONV(Py,)
of the corresponding sets of points in P are pairwise disjoint. A partition
is irreducible if it has exactly one block with more than one element. Since
there is an obvious bijection between irreducible partitions and subsets of
[n] of size at least 2, we write w4 to indicate the irreducible partition whose
unique non-singleton block is A.

Definition 3.2 (Noncrossing partition lattice). Let m and 7’ be noncrossing
partitions of [n]. If each block of 7 is contained in some block of 7/, then 7
is called a refinement of ©’ and we write m < /. The set of all noncrossing
partitions of [n] under the refinement partial order has well defined meets
and joins and is called the lattice of noncrossing partitions NC,,.

The Hasse diagram for NCy is shown in Figure[3] The noncrossing partition
lattice has a maximum partition with only one block and a minimum par-
tition, also called the discrete partition, where each block contains a single
element. We write NC} for the poset of non-trivial noncrossing partitions,
i.e. NC,, with the discrete partition removed.

Definition 3.3 (Rank function). The noncrossing partition lattice NC,, is
a graded poset with a rank function. The rank of the noncrossing partition
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F1GURE 3. The noncrossing partition lattice NCy

m = {A1, Ag,..., A} istk(m) = n—k. In particular, the rank of the discrete
partition is 0, the rank of the maximum partition is » — 1 and the rank of
the irreducible partition 74 is |A] — 1.

For more about noncrossing partitions, see [McC06l [Arm09, [Stal2]. Using
the rotation braids defined in Definition there is a natural map from
noncrossing partitions to braids.

Definition 3.4 (Dual simple braids). Let @ = {Ai,..., Ay} € NC, be a
noncrossing partition. The dual simple braid  is defined to be the product
of the rotation braids d4, - - - d4, and since the rotation braid of a singleton
set is the trivial braid, the product only needs to be taken over the blocks of
size at least 2. Moreover, because the standard subdisks D4, are pairwise
disjoint, the rotation braids 4, pairwise commute and the order in which
they are multiplied is irrelevant. Finally note that for each A < [n] of size
at least 2, the irreducible partition 74 corresponds to the rotation braid d 4.
In accordance with notation for noncrossing partitions we denote by DS,, :=
{0 | m e NC,} the set of dual simple braids and by DS := {0, | 7 € NC}}
the set of non-trivial dual simple braids. We equip both sets with the order
coming from NC,,.

Taking the transitive closure gives a partial order on all of BRAID,. It has
the following property:
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SyMm, Braib,,
Ul Ul
NC, = NP, ~ DS,
(noncrossing  (noncrossing (dual simple
partitions) permutations) braids)

TABLE 1. The names of noncrossing partitions as subsets of
the symmetric group and the braid group.

Proposition 3.5. The partial order < on BRAID,, is a left-invariant lattice
order. The set DS,, is the interval [1,8] with respect to this order. In par-
ticular, if o,7 € NC,, then o < 7 if and only if 65 10, is a dual simple braid
if and only if 6-05 ' is a dual simple braid.

Proof. This can be seen from [BKLIS| but it is easier to reference from
[Bra0l]. Our dual simple braids are “(braids corresponding to) allowable
elements” in [BraOl]. That the order on DS,, is left-divisibility follows from
[Bra01l, Lemma 3.10]. Consequently taking the transitive closure is the same
as taking an element to be > 1 if and only if it is generated by dual simple
braids. That this defines a left-invariant partial order follows from [Bra0ll,
Lemma 5.6]. That DS,, is the interval [1,¢] follows from the injectivity
statement [BraOll, Theorem 5.7]. O

There is a third poset, isomorphic to both NC,, and DS,,, which provides
another useful perspective on the combinatorics of noncrossing partitions.

Definition 3.6 (Noncrossing Permutations). As described in Definition [3.4]
the poset of dual simple braids is obtained via an injection of NC,, into
BRAID,,. The composition of this injection with the PERM map is also injec-
tive and we refer to the image of the composition NC,, <— SyM,, as the set of
noncrossing permutations, denoted NP,,. Refer to the noncrossing permu-
tation corresponding to m € NC,, as o,. With the partial order induced by
the noncrossing partition lattice, NP,, is isomorphic to both DS,, and NC,,.

To help the reader keep track of the notation adherent to NC, and its
counterparts within BRAID,, and SYM,, we provide a dictionary in Table [T}

The following proposition records standard facts about factorizations of
dual simple braids into dual simple braids.

Proposition 3.7 (Relations). If m, 7’ € NC,, are noncrossing partitions with
7w < 7/, then there exist unique 1,73 € NCy, such that §r,0r = 6707, = O
in BRAID,,. Conversely, if w1, m,m3 € NC,, are noncrossing partitions such
that 0z, 0r, = Oz, in BRAID,,, then m; < w3, T2 < w3 and w3 is the join of m
and w9 in NC,,.

Proof. Follows from Theorem 3.7, Lemma 3.9, and Theorem 4.8 of [Bra01].
O
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F1GURE 4. The noncrossing partition 7 with blocks A; =
{1,2,6,9}, As = {3,5}, A3 = {4} and A4 = {7,8} on the left
corresponds to the braid d; = d4,04,04, on the right.

These relations are used to define the dual presentation of the braid group.

Definition 3.8 (Dual presentation). Let S = {s; | # € NC}} be a set
indexed by the non-trivial noncrossing partitions and let R be the set of
relations of the form s, sy, = sz, where such a relation is in R if and only
if 05,0r, = Oz, holds in BRAID,,. The finite presentation { S | R ) is called
the dual presentation of the n-strand braid group.

The name reflects the following fact established by Tom Brady in [Bra01].

Theorem 3.9 (Dual presentation). The abstract group G defined by the dual
presentation of the n-strand braid group is isomorphic to the n-strand braid
group. Concretely, the function that sends sy € S to the dual simple braid
0r € BRAID,, extends to a group isomorphism between G and BRAID,,. [

4. PARABOLIC SUBGROUPS

This section establishes properties of subgroups of BRAID,, indexed by non-
crossing partitions of [n]. We begin by showing that two different configu-
ration spaces have isomorphic fundamental groups.

Lemma 4.1 (Isomorphic groups). For a subset A < [n] of size k, let B =
[n] — A and DB = D— Pg. The natural inclusion map D4 — DP extends to
an inclusion map h: UCONFL(D4) < UCONF(DB) and the induced map
hy: 1 (UCONFL(D4), Pa) — m1 (UCONFL(DP), P4) is an isomorphism.

Proof. When k = 1 both groups are trivial and there is nothing to prove.
For each element [f] in 7 (UCONF,(D?), P4), the path f can be homotoped
so that it never leaves the subdisk D 4. One can, for example, modify f so
that the configurations first radially shrink towards a point in the interior
of Dy, followed by the original representative f on a rescaled version of DP
strictly contained in D 4, followed by a radial expansion back to the starting
position. This shows that hy is onto. Suppose [f] and [g] are elements in
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m1(UCONFL(D4), P4) such that f and g are homotopic based paths in the
bigger space UCONF;(D?). A very similar modification that can be done
here so that the entire homotopy between f and g takes place inside the
subdisk D 4, and this shows that h, is injective. O

We are interested in the images of these isomorphic groups inside the n-
strand braid group.

Definition 4.2 (Subgroups). Let A be a nonempty subset of [n] of size k,
let B = [n]—A and let D® = D— Pg. For each such A, we define a map from
BRrAID; to BRAID,, whose image is a subgroup we call BRAID 4. When k = 1,
BRAID;, is trivial, the only possible map is the trivial map and BRAID4 is
the trivial subgroup of BRAID,. For k > 1, the subspace D4 is a disk,
by Corollary the group m (UCONFy(Dy), P4) is isomorphic to BRAIDy,
and by Lemm 71 (UCONF,(DB), Py) is also isomorphic to BRAID. Let
g: UCONF,(DP) — UCONF,(P) be the natural embedding that sends a
set U € UCONFg(D?) to g(U) = U u Pg € UCONF,(P) and note that
g(Pa) = P. The group BRAID4 is the subgroup g.«(m1(UCONF,(DB), Py)).

Note that for every A c [n], the rotation braid §4 is an element of the
subgroup BRAID 4. We are also interested in the braids that fix a subset of
vertices in V.

Definition 4.3 (Fixing vertices). Let a be a braid in BRAID,, represented
by f. We say that f fizes the vertex p; € P if the strand that starts at p; is
a constant path, i.e. fi(t) = p; for all t € [0,1]. Similarly, f fizes Pg = P if
it fixes each p; € Pg and a braid « fizes Pp if it has some representative f
that fixes Pg. Let F1x,,(B) = {« € BRAID,, | « fixes Pg}. Since the special
representatives can be concatenated and inverted while remaining special,
F1x,(B) is a subgroup of BRAID,,.

The two constructions describe the same set of subgroups.

Lemma 4.4 (F1x,,(B) = BRAID4). If A and B are nonempty sets that par-
tition [n], then the fized subgroup F1x,,(B) is equal to the subgroup BRAID 4.

Proof. The map g described in Definition shows that every braid in
BRrAID4 has a representative that fixes Pg. Thus BRAID4 < Fix,(B).
Conversely, let « be a braid in Fi1x,,(B) and let f be a representative of «
that fixes Pp. Since the vertices in Pp are always occupied, f restricted to
the strands that start in Py is a loop in the space UCONF(D?). Thus «
is in the subgroup gs« (71 (UCONF,(D?), P4)) = BRAID 4, which means that
Fix,(B) c BrAID4 and the two groups are equal. O

The subgroups of the form BRAID4 = FiX,(B) are used to construct the
dual parabolic subgroups of BRAID,,.

Definition 4.5 (Dual parabolic subgroups). Let m = {Aj, Ag,..., Ax} €
NC,, be a noncrossing partition. We define the subgroup BRAID, < BRAID,,
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to be the internal direct product BRAID; = BRAID4, X...xBRAID4,. These
are pairwise commuting subgroups that intersect trivially because they are
moving points around in disjoint standard subdisks Dy,. We call BRAID,
a dual parabolic subgroup. The subgroup BRAID4 is an irreducible dual
parabolic because it corresponds to the irreducible noncrossing partition 7 4.
And when A = [n]—{i} we call BRAID 4 a mazimal irreducible dual parabolic.

The adjective “dual” is used to distinguish them from the standard parabolic
subgroups associated with the standard presentation of BRAID,,, but the two
collections of subgroups are closely related. To make the connection between
them precise, we pause to discuss the stardard presentation of BRAID,, and
the standard parabolic subgroups derived from this presentation. We begin
by recalling some of the basic relations satisfied by a pair of rotations indexed
by edges in the disk D.

Definition 4.6 (Basic relations). Let e and ¢’ be two edges in D. Since
they are straight line segments connecting vertices of the convex polygonal
disk D, e and €’ are either disjoint, share a commmon vertex, or they cross
at some point in the interior of each edge. When e and €' are disjoint,
the rotations d, and J. commute, i.e. 0.0 = J0.. When e and e’ share
a common vertex, 0. and 0y braid, i.e. 0.0,0, = 0.0.0,. We call these
commuting and braiding relations the basic relations of BRAID,,. When e
and €’ cross, no basic relation between §, and d. is defined.

Artin showed that a small set of rotations indexed by edges in D is sufficient
to generate BRAID,, and that the basic relations between them are sufficient
to complete a presentation of BRAID,,.

Definition 4.7 (Standard presentation). Consider the abstract group
(4.1) G—<31,...,sn_1 5i5j = 5i5j if |0 —j| > 1 >

SiSjSi = SjSZ'Sj lf ‘Z *]’ =1
This is the standard presentation of the n-strand braid group and S =
{s1,82,...,8n—1} is its standard generating set.

Theorem 4.8 ([Art25]). The abstract group G defined by the standard pre-
sentation of the n-strand braid group is isomorphic to the n-strand braid
group. Concretely, the function that sends s; to . € BRAID,, where e is
the edge connecting p; and p;+1 extends to an isomorphism between G and
BrAID,,. |

Standard parabolic subgroups are generated by subsets of S.

Definition 4.9 (Standard parabolic subgroups). Let S = {s1,s2,...,Sn—1}
be the standard generating set for the abstract group G =~ BRAID,,. For any
subset S’ < S, the subgroup (S’) © G generated by S’ is called a standard
parabolic subgroup. The subsets of the form S|; j; = {s¢ | i < £ < j} generate
the irreducible standard parabolic subgroups of G. These subsets correspond
to sets of edges forming a connected subgraph in the boundary of D.



16 M. DOUGHERTY, J. MCCAMMOND, AND S. WITZEL

We record two standard facts about the irreducible standard parabolic sub-
groups of the braid groups: (1) they are isomorphic to braid groups and (2)
they are closed under intersection.

Proposition 4.10 (Isomorphisms). Let i,j € [n] with ¢ < j. Then the
irreducible subgroup generated by Sy ;) = {s¢ | i < € < j} is isomorphic to
BrAIDg, where k =5 —i+ 1.

Proof. It is immediate from the standard presentation that BRAID; maps
onto S|; ;1. That this map is injective follows from the solution of the word
problem, [Art25] §3]. O

Proposition 4.11 (Intersections). For all subsets S',S” < S, the inter-
section (S") n (S") is equal to the standard parabolic subgroup {(S" n S") .
Moreover, when both (S") and (S") are irreducible subgroups, so is (S'nS").

Proof. Immediate from Proposition [£.10} O
For later use we record the following fact.

Lemma 4.12. The map BRAID,, — Z that takes 6, to rk(w) is the abelian-
ization of BRAID,,.

Proof. The map is well-defined by Proposition [3.7] because if dx,07, = 0ry
then the rank function on BRAID,, satisfies rkm; + rkmy = rkms3. The fact
that it is the full abelianization is immediate from the standard presentation

(D). O

With this we end our digression on standard presentations and return to
dual structure.

Lemma 4.13 (Maximal dual parabolics). The intersection of two mazimal
irreducible dual parabolic subgroups is an irreducible dual parabolic subgroup.
In particular, for alln > 0 and for all i,j € [n],

Fixn({i,j}) = F1xn({i}) n F1xn({7})-

Proof. For every pair of vertices p; and p; one can select a sequence E =
(e1,...,en—1) of edges in D so that together, in this order, they form an
embedded path through all vertices of D starting at p; and ending at p;.
Because the rotations d. for e € E satisfy the necessary basic relations (Def-
inition , the function that sends s, € S to the rotation J., extends to
group homomorphism from ¢g: G — BRAID,. In fact g is a group isomor-
phism since up to homeomophism of C this is just the usual isomorphism
between the abstract group G and the braid group BRAID,. Under this
isomorphism the subgroup (S|, is sent to the subgroup Fix,({i}), the
subgroup {S};,—1)) is sent to the subgroup Fix,({j}), and the subgroup
(S[2,n)) is sent to the subgroup Fix,({i,j}). Proposition completes the
proof. ([l
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Lemma 4.14 (Relative maximal dual parabolics). The intersection of two
irreducible dual parabolic subgroups that are both mazximal in a third irre-
ducible dual parabolic subgroup is again an irreducible dual parabolic sub-
group. In other words, for all n > 0 and for all {i},{j},C < [n],

Fi1x,(C u {i,7}) = F1x,(C u {i}) n F1x,,(C U {j}).

Proof. When C' is empty, the statement is just Lemma and when C' is
[n] there is nothing to prove. When C' is proper and non-empty, all three
groups are contained in F1x,,(C') = BRAID4 =~ BRAID; where k is the size
of A = [n] — C. There is a homeomorphism from D4 to the regular k-gon
that sends vertices to vertices, so Lemma [I.2] shows that the assertion now
follows by applying Lemma to this k-gon. O

Proposition 4.15 (Arbitrary dual parabolics). Every proper irreducible
dual parabolic subgroup of BRAID,, is equal to the intersection of the mazximal
irreducible dual parabolic subgroups that contain it and, as a consequence,
the collection of irreducible dual parabolics is closed under intersection. In
other words, for alln > 0 and for every non-empty B < [n],

Fix,(B) = ﬂ Fix,({i})

€B
and, as a consequence, for all non-empty C, D c B,

Fi1x,(C u D) = F1x,(C) n F1x,, (D).

Proof. When B is a singleton, the result is trivial and when B has size 2
both claims are true by Lemma so suppose that both claims hold for
all subsets of size at most k£ with k > 1 and let B be a subset of size k+1. If ¢
and j are elements in B, and C = B—{i, j}, then F1x,,(B) = F1xX,(Cu{i, j})
which is equal to F1x,,(C' U {i}) "F1xX,(C'U{j}) by Lemmal[d.14] By applying
the second inductive claim to the sets C' U {i} and C' U {j} and simplifying
slightly we can rewrite this as F1x,(C) n Fi1x,({i}) n F1x,,({j}). Applying
the first inductive claim to the set C' shows that first claim holds for B and
the second claim for B follows as an immediate consequence. This completes
the induction and the proof. O

Part 2. Complexes

In this part, we study complexes built out of ordered simplices, specifically
how they can be equipped with an orthoscheme metric.
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5. ORDERED SIMPLICES

An ordered simplex is a simplex with a fixed linear ordering of its vertex
set. Complexes built out of ordered simplices are often used as explicit mod-
els. Eilenberg and Steenrod, for example, use ordered simplicial complexes
[ES52]. We follow Hatcher in using the more flexible A-complexes [Hat02].

Definition 5.1 (Ordered simplices). A k-simplez is the convex hull of k +1
points pg, p1, . .., pi in general position in a sufficiently high-dimensional real
vector space E. An ordered k-simplex is a k-simplex together with a fixed
linear ordering of its k + 1 vertices. We write o = [po,p1,...,px] for an
ordered k-simplex o with vertex set {po,pi,...,pr} < E where the vertices
are ordered left-to-right: p; < p; in the linear order if and only if 7 < j in the
natural numbers. An isomorphism of ordered simplices is an affine bijection

[pos - - - k] = [Phs - - -, P that takes p; to pi.

Let E be a vector space containing an ordered k-simplex o. To facilitate
computations, we establish a standard coordinate system on the smallest
affine subspace of E containing ¢ which both identifies this subspace with
R* and also reflects the linear ordering of its vertices.

Definition 5.2 (Standard coordinates). Let ¢ = [po,p1,...,pr] be an or-
dered k-simplex. We take the ambient vector space E to have origin pg and
to be spanned by pi, ..., pg. For each i € [k], let U; = p; —p;—1 be the vector
from p;_1 to p; so that that B = (01, 0s,...,0k) is an ordered basis for F.
We call B the standard ordered basis of o. In this basis p; = >7_, ¢; and

xr = (Jfl,frg,...,xk)g =101 + ...+ TR0
= (—z1)po + (1 — x2)p1 + - -+ + (Th—1 — Ti)Pr—1 + (Tk)Pk
= (1 —2z1)po+ (z1 —x2)p1 + -+ + (@h—1 — z&)Pr—1 + (Tk) Pk

since pg is the origin. Since the coefficients in the last equation are barycen-
tric coordinates on E, we see that (z1,z2,...,zk)p is in o if and only if
1221 220> -+ 2 x = 0. In particular, the facets of ¢ determine the
k+1 hyperplanes given by the equations 1 = 1, z; = ;41 for i € [k—1] and
xp = 0, respectively. If o and ¢’ are ordered simplices with oriented bases
(U1,...,0) and (07,...,7}), the unique isomorphism o — ¢’ takes >, ;¥
to Zz Oéﬂ_)z

Example 5.3 (Standard Coordinates). Figureshows an ordered 3-simplex
o. The vector #; is from py to pi, the vector ¥y is from p; to py and the
vector ¥ is from py to p3. With respect to the ordered basis B = {¥], 2, U3}
with pg located at the origin, p; = (1,0,0), p2 = (1,1,0) and p3 = (1,1, 1).

Faces of ordered simplices are ordered by restriction. As such they have
standard coordinates which can be described as follows.
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p D3

b D2

FIGURE 5. An ordered 3-simplex. In standard coordinates
po s the origin, p; = (17 0, 0)7 b2 = (17 1, O) and pg = (L 1, 1)
with respect to the ordered basis B = {, ¥, U3}.

Lemma 5.4 (Facets). Let o = [po,...,pr] be an ordered simplex with
ordered basis B = (U1,...,0;). The ordered basis B' of the facet T =

[p()v <oy Pi—1,Pi+1y - - apk] 18

(T, ) if0—i
B' =<3 (U1,...,0—1, 0 + Uig1, Vis2, ..., 0) if0<i<k
(@, . o) ifi=Fk. -

In anticipation of Deﬁnitionthe following definition is modeled on [BH99,
Definition 1.7.2].

Definition 5.5 (A-complex). Let (o))xea be a family of ordered simplices
with disjoint union X = (J(oy x {A}). Let ~ be an equivalence relation on
X and let K = X/ ~. Let p: X — K be the quotient map and py: o) —
K,z — p(z, ) its restriction to o).
We say that K is a A-complex if:
(1) the restriction of py to the interior of o) is injective;
(2) for A € A and every face 7 of o there is a X' € A and an isomorphism
of ordered simplices h: 7 — oy such that py|; = py o h;
(3) if A\, X € A and interior points = € o) and 2’ € oy are such that
pa(z) = px(z’) then there is an isomorphism of ordered simplices
h: oy — oy such that py(h(x)) = pr(x) for x € o).
We will usually regard A-complexes as equipped with a structure as above
and refer to the simplices o) as simplices of K. We will also make the
identification in implicit and regard faces of o) as simplices of K.

Turning a simplicial complex into a A-complex means to orient the edges
in a consistent way. A setting where a natural orientation exists is the
following.
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Proposition 5.6 (Cayley graphs and A-complexes). Let G be a group and
let f: G — (R,+) be a group homomorphism. Let S < G be a set of
generators such that f(s) > 0 for every s € S. The right Cayley graph
I' = Cay(G, S) is a simplicial graph whose flag compler X = FLAG(T') can
be turned into a A-complez.

Proof. The right Cayley graph has no doubled edges because f(g~!) =
—f(g) for g € G so that at most one of g and g~! is in S. It has no
loops because f(1) =0 so that 1¢ S.

We define a relation < on G by declaring that g < gs for s € S and taking
the reflexive transitive closure. The homomorphism f guarantees that this
is a partial order on G. Any two adjacent vertices are comparable so the
restriction to a simplex is a total order. O

6. ORTHOSCHEMES

The goal of this section is to equip certain A-complexes with a piecewise
FEuclidean metric.

Definition 6.1 (Orthoscheme). Let E be a Euclidean vector space and let
o € F be a simplex. Then ¢ with the induced metric is called a Fuclidean
simplex. If o is an ordered simplex and the associated ordered basis is
orthogonal then ¢ is an orthoscheme. If it is an orthonormal basis then o is
a standard orthoscheme.

Definition 6.2 (Orthoscheme complex). An orthoscheme complex is a A-
complex where each simplex has been given the metric of an orthoscheme
in such a way that the isomorphisms in the definition of a A-complex are
isometries. It is equipped with the length pseudometric assigning to two
points the infimal length of a piecewise affine path.

Remark 6.3. Orthoscheme complexes are My-simplicial complexes in the
sense of [BH99, 1.7.1] so we will not discuss the metric subtleties in detail.
Our main interest concerning the metric is the behavior with respect to
products, which is not among the subtleties.

Lemma 6.4 (Orthoscheme complex structures and edge norms). Let X be
a A-complex. There is a one-to-one correspondence between orthoscheme
complex structures on X and maps NORM: EDGES(X) — R~ that satisfy

(6.1) NORM([po, p1]) + NORM([p1, p2]) = NORM([po, p2])
for every 2-simplex [po, p1,p2] of X.
Proof. If X is equipped with a orthoscheme complex-structure, defining

NORM([p, q]) = |lg — p||? gives a map satisfying condition ([6.1)) (correspond-
ing to the right angle in py).
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Conversely, the squares of edge lengths of an orthoscheme need to satisfy
and this is the only requirement for a well-defined assignment. The
unique isomorphism of ordered simplicial complexes between orthoschemes
with same edge lengths is an isometry. Hence equipping the simplices of
a A-complex with a orthoscheme metric satisfying gives rise to an
orthoscheme complex. O

We can use this characterization of orthoscheme complexes to extend Propo-
sition

Proposition 6.5 (Cayley graphs and orthoschemes). Let G be a group,
f: G — (R,+) be a group homomorphism, and let S be a generating set of
G with f(s) > 0 for every s € S. The right Cayley graph T' = Cay(G,S) is
a simplicial graph whose flag complex X = FLAG(T') can be turned into an
orthoscheme complex using f.

Proof. By Proposition X is a A-complex and we claim that
NORM([g, gs]) := f(gs) — f(g) = f(s) > 0

satisfies (6.1)).
Indeed

NoRrM([g, gss']) = f(gss') — f(g)
= (f(gss) — f(gs)) + (f(g5) — f(9))
= NORrRM([gss’, gs]) + NOrM([gs, g])-

since f is a homomorphism. O

Definition 6.6 (Dual braid complex). Let S = DS} be the set of non-
trivial dual simple braids in the braid group BRAID,,. By Theorem [3.9] the
set S — BRAID} generates the group and by Lemma the abelianiza-
tion map f: BRAID,, — Z sends the non-trivial dual simple braid 6, € S
to the positive integer f(d) = rk(w). By Proposition the flag complex
X = Frac(I") of the simplicial graph I"' = Cay(BRAID,,.S) can be turned
into an orthoscheme complex using f to compute the norm of each edge.
The resulting orthoscheme complex is called the dual braid n-complex and
denoted CPLX(BRAID,,). Note that every edge of CPLX(BRAID,,) is natu-
rally labeled by an element of S = DS} or, equivalently, by a non-trivial
noncrossing partition. More generally, every simplex is naturally labeled by
a chain of NC,,.

It is clear from the construction that BRAID,, acts freely on CPLX(BRAID,,)
and that CPLX(BRAID,,) is covered by translates of the full subcomplex sup-
ported on DS,,, which is therefore a fundamental domain. The key feature,
implying that BRAID,,\CPLX(BRAID,,) is a classifying space for BRAID,,, is:

Theorem 6.7 ([BraOl]). The complex CPLX(BRAID,,) is contractible.
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In fact, it is shown in [BM10] CpLx(BRAID,,) is CAT(0) when n < 6 and
in [HKS16] this was extended to the case n = 6.

7. PrRODUCTS

The main advantage of working with ordered simplices and A-complexes is
that they admit well-behaved products.

Example 7.1 (Products of simplices). The product of two 1-simplices is a
quadrangle. It can be subdivided into two triangles in two ways but nei-
ther of these is distinguished. More generally, the product of two (positive-
dimensional) simplices is not a simplex nor does it have a canonical simplicial
subdivision.

In contrast, we will see that the product of two simplices whose vertices
are totally ordered admits a canonical subdivision into chains. We start by
looking at finite products of edges first, i.e. cubes.

Example 7.2 (Subdivided cubes). Let R* be a k-dimensional real vector
space with a fixed ordered basis B = {71, ...,0x}. The unit k-cube CUBEy
in R is the set of vectors where each coordinate is in the interval [0, 1] and
its vertices are the points where every coordinate is either 0 or 1. There is a
natural bijection between the vertex set of CUBE and the set of all subsets
of [k]: simply send each vertex to the set of indices of the coordinates where
the value is 1. If we partially order the subsets of [k] by inclusion (to form
the Boolean lattice BOOLy), this partially orders the vertices of CUBEy, and
by sending B < [k] to the vector 1p = >,._p¥;, we obtain a convenient
labeling for the vertices. At the extremes, we write 1 = 1) = (1,1,...,1)
and 0 = 14 = (0,0,...,0).

Let H be the collection of hyperplanes H;; in R* defined by the equations
x; = xj for i # j € [k]. There is a minimal cellular subdivision of CUBEy
for which CUBE, n H;j is a subcomplex for all i # j € [k] and it is a
simplicial subdivision. The subdivision has k! top-dimensional simplices and
the partial order on the vertices of CUBEy is a linear order when restricted
to each simplex. In particular, this subdivided k-cube is a A-complex.

Remark 7.3. When our selected basis B is orthonormal, CUBEy is a regu-
lar Euclidean unit cube and the top-dimensional simplices are orthoschemes.
In other words, the k! simplices in the simplicial structure for CUBEy corre-
spond to the k! ways to take k steps from 0 to 1 in the coordinate directions.
A 3-orthoscheme from the simplicial structure on CUBE3 is shown in Fig-

ure [

Example 7.4 (Products of subdivided cubes). The product of CUBEy and
CUBEy is naturally identified the unit cube CUBEg¢. Using the simplicial
subdivision given in Example we obtain a canonical A-complex structure
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111,23

LNR)!

0 10

FIGURE 6. A 3-orthoscheme from 0 to 1 = 14 53, inside
CuBE3. The edges of the piecewise geodesic path are thicker
and darker than the others.

for the product CUBEg, . Selecting top-dimensional simplices ¢ in CUBEy
and 7 in CUBE corresponds to a product of simplices o x 7 in CUBEg,y,
which then inherits a simplicial subdivision from that of CUBEg.

Since any ordered simplex can be considered as a top-dimensional simplex
in the subdivision from Example we can use the simplicial structure for
CUBE, ¢ to describe the product of two ordered simplices as a A-complex.

Example 7.5 (Product of ordered simplices). Let ¢ and 7 be ordered

simplices of dimension k and ¢, respectively, with o = [vg,v1,...,v] and
T = [ug, u1,...,ur]. In standard coordinates o R* is the set of points z =
(x1,29,...,2;) € RF satisfying the inequalities 1 > z1 > 29 > --- > 23, > 0.

Similarly, 7 = R’ is the set of points y = (y1,¥2,...,y¢) € R’ satisfying the
inequalities 1 = y; = yo = --- = y¢ = 0. The product o x 7 is the set of points
(21, ..., Tks Y1, - - -, ye) € RF x R satisfying both sets of inequalities. Let H
be the collection of £ - £ hyperplanes H;; defined by the equations x; = y;,
with i € [k] and j € [¢]. When we minimally subdivide the polytope o x T so
that for every i € [k] and every j € [¢], H;j; n (0 x T) is a subcomplex of the
new cell structure, then the new cell structure is a simplicial complex which

contains (/ngrg) simplices of dimension k& + ¢. The points in the interiors of
these top-dimensional simplices correspond to points (z1,..., 2k, Y1,---,Ye)

where all k£ + ¢ coordinates are distinct and the simplex containing this point
is determined by the xy-pattern of the coordinates when arranged in decreas-
ing linear order. For example, if k =2, /=1 and x¢9 > x1 > yo > T2 > 11
then its pattern is zxyzry and all generic points with this pattern belong to
the same top-dimensional simplex. The natural partial order on the vertices
of o x 7 is given by the rule (v, u;j,) < (viy,uj,) if and only if ¢; < iy and
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J1 < ja. This restricts to a linear order on each simplex in the new simplicial
structure, which turns the result into an ordered simplicial complex.

Definition 7.6 (Product of ordered simplices). Let o and 7 be ordered
simplices. The decomposition of o x 7 described in Example [7.5] is the
canonical decomposition. We write o @ 7 to denote the A-complex that is
o X T with the canonical decomposition.

The construction described in Definition is the natural generalization of
partitioning the unit square in the first quadrant by the diagonal line where
the two coordinates are equal. It readily generalizes to finite products of
ordered simplices.

Example 7.7 (Finite products). Let o1,09,...,0, be ordered simplices
of dimension ki, ko, ..., ky, respectively, and view o1 X g9 X -+ X 0y, as a
subset of RF1++km with coordinates given by concatenating the standard
ordered bases. Let H be the finite collection of hyperplanes defined by an
equation setting a canonical coordinate in one factor equal to a canonical
coordinate in different factor. The minimal subdivision of the product cell
complex X = 01 X 09 X -+ X 0., S0 that for every hyperplane H € H,
H n X is a subcomplex in the new cell structure is a simplicial complex with
N simplices of dimension ki + kg + - -+ + ky,,, where N is the multinomial

coefficient (klkt’f;"'zkm). This illustrates that & is associative.
9 ey ivm

The canonical subdivision of products of ordered simplices also readily ex-
tends to the product of A-complexes.

Definition 7.8 (Products of A-complexes). Let X and Y be A-complexes.
The product complex X x Y carries a canonical A-complex structure which
can be described as follows. Let p,: 0 — X and p,: 7 — Y be simplices
of X and Y. Then every simplex p in the canonical subdivision of o x 7
is a simplex of X x Y via p, = (ps X pr)|,- We denote X x Y with this
A-complex structure by X @Y.

Note that when ¢ and 7 are Euclidean simplices, their product o x 7 in-
herits a Euclidean metric from the metric product of the Euclidean spaces
containing them and when they are ordered Euclidean simplices, the ordered
simplicial complex o & 7 is constructed out of ordered Euclidean simplices.

The product construct described in Definition [7.6] is well-behaved when
the factors are orthoschemes or standard orthoschemes.

Lemma 7.9 (Products of orthoschemes). If o and 7 are orthoschemes,
then o A T is an orthoscheme complex isometric to the metric product o x
7. Moreover, when o and T are standard orthoschemes, then every top-
dimensional simplex in o A 7 is a standard orthoscheme.

Proof. Let 0 and 7 be ordered Euclidean simplices of dimension k£ and /,
respectively and let o @ 7 be the simplicial decomposition of the Euclidean
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polytope o x 7 into Euclidean simplices. If By and Bs are the standard
ordered bases associated to o and 7, then by Example the A-complex
o@aT is a subcomplex of the unit cube CUBEy, ¢ in the ordered basis obtained
by concatenating B; and By. When B; and Bs are both orthogonal, o and
T are orthoschemes and the concatenated ordered bases produces a metric
Euclidean cube for which the simplicial subdivision in Example makes
CUBEg,¢ into an orthoscheme complex. Hence, the subcomplex c@T is an or-
thoscheme complex as well. The analogous result for standard orthoschemes
follows by considering the case when B; and By are both orthonormal. [J

As a consequence we get:

Proposition 7.10 (Products of orthoscheme complexes). If X and Y are
orthoscheme complexes then X BY 1is an orthoscheme complex isometric to
the metric direct product X x Y. O

8. COLUMNS

In this section we describe a particularly useful type of orthoscheme complex,
initially defined in [BMI0].

Example 8.1 (Orthoschemes and R¥). Regard R as an infinite linear graph
with vertex set Z and edges from i to i + 1. Then R” is isometric to the
k-fold product R @ --- @ R. This complex has vertex set ZF with simplices
on vertices £ < ¥+ 1p, <...<Z+1p, for g < By < ... < By < [k]. We
call this the standard orthoscheme tiling of R*. It can also be viewed as the
standard cubing of R¥ in which each k-cube has been given the simplicial
subdivision described in Example

Alternatively, the orthoscheme tiling of R¥ can be viewed as the cell structure
of a simplicial hyperplane arrangement.

Definition 8.2 (Types of hyperplanes). Consider the hyperplane arrange-
ment consisting of two types of hyperplanes. The first type are those defined
by the equations z; = ¢ for all i € [k] and all £ € Z. The second type are those
defined by the equations z; — z; = £ for all ¢ # j € [k] and all £ € Z. When
both types of hyperplanes are used, the resulting hyperplane arrangement
partitions R” into its standard orthoscheme tiling.

The hyperplanes of the first type define the standard cubing of R* and the
hyperplanes of the second type are closely related to the Coxeter complex
of the affine symmetric group.

Definition 8.3 (Affine symmetric group). The Euclidean Coxeter group of

type gk,l is also called the affine symmetric group SYMg. It is generated
by orthogonal reflection in the hyperplanes of the second kind.
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Remark 8.4. Note that the spherical Coxeter group of type Ai_1, the
symmetric group, is generated by reflections in hyperplanes of the second
type for which £ = 0. Since the roots e; — e; are perpendicular to the vector
1, both the symmetric group and the affine symmetric group act on the
(k — 1)-dimensional space 1+.

Definition 8.5 (Coxeter shapes and columns). The hyperplane arrange-
ment that consists solely of the hyperplanes of the second type restricted
to any hyperplane H defined by the equation (x,1) = r for some r € R
partitions H =~ R*! into a reflection tiling by Euclidean simplices whose
shape is encoded in the extended Dynkin diagram of the type /le:—l- We
call the isometry type of this Euclidean simplex the Cozeter shape or Cox-
eter simplex of type ﬁk,l and when the subscript is clear from context it
is often omitted to improve clarity. When this hyperplane arrangement is
not restricted to a hyperplane orthogonal to the vector 1, the closure of a
connected component of the complementary region is an unbounded infinite
column that is a metric product o x R where o is a Coxeter simplex of type
A and R is the real line. We call these the columns of R

One consequence of this column structure is that the standard orthoscheme
tiling of R* partitions the columns of R into a sequence of orthoschemes.
We begin with an explicit example.

Example 8.6 (Column in R?). Let C be the unique column of R? that
contains the 3-simplex shown in Figure [6] The column C is defined by the
inequalities x1 > xo = x3 = x1 — 1 and its sides are the hyperplanes defined
by the equations 1 — x2 = 0, xo — x3 = 0 and x1 — 3 = 1. The vertices of
73 contained in this column form a sequence {ve} ez where the order of the
sequence is determined by the inner product of these points with the special
vector 1 = (13) = (1,1,1). Concretely, the vertex v, is the unique point in
73 ~C such that {(vy, 1) = £ € Z. The vectors in this case are v_; = (0,0, —1),
vy = (0,0,0), vl = (1,0,0), Vo = (1,1,0), v3 = (1,1,1), Vg4 = (2,1,1) and
So on. Successive points in this list are connected by unit length edges
in coordinate directions and this turns the full list into a spiral of edges.
Traveling up the spiral, the edges cycle through the possible directions in
a predictable order. In this case they travel one unit step in the positive
x-direction, y-direction, z-direction, xz-direction, y-direction, z-direction and
so on. Any 3 consecutive edges in the spiral have a standard 3-orthoscheme
as its convex hull and the union of these individual orthoschemes is the
convex hull of the full spiral, which is also the full column C. See Figure [7]
Metrically C is 0 x R where o is an equilateral triangle, i.e. the Coxeter
simplex of type A,.

Columns in R* have many of the same properties.
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(443)

FIGURE 7. A portion of the column in R? that contains the

orthoscheme shown in Figure [0} The edges of the spiral are
thicker and darker than the others - see Example

Definition 8.7 (Columns in R¥). A column C of R¥ can be defined by
inequalities of the form

(8.1) Top FQpy 2 Ty + Ay = 2 Ty, +Qpp, = Ty + Ay — 1
where (7m1,m2,...,m) is a permutation of integers (1,2,...,k) and a =
(a1,as,...,a;) is a point in Z*. The vertices of Z* contained in C form

a sequence {vg}eez where the order of the sequence is determined by the
inner product of these points with the vector 1 = (1,1,...,1). Concretely
the vertex vy is the unique point in Z* n C such that (vy,1) = £ € Z. Suc-
cessive points in this list are connected by unit length edges in coordinate
directions and this turns the full list into a spiral of edges. Traveling up the
spiral, the edges cycle through the possible directions in a predictable order
based on the list (71,79, ..., 7). Any k consecutive edges in the spiral have
a standard k-orthoscheme as its convex hull and the union of these individ-
ual orthoschemes is the convex hull of the full spiral, which is also the full
column C. Metrically, C is ¢ x R where ¢ is a Coxeter simplex of type Ay
Since the full column is a convex subset of R¥, it is a CAT(0) space.
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Definition 8.8 (Dilated columns). If the —1 in the final inequality of Equa-
tion defining a column in R¥ is replaced by a —¢ for some positive integer
£, then the shape described is a dilated column, i.e. a dilated version of a sin-
gle column. As a metric space, a dilated column is a metric direct product
of the real line and a Coxeter shape of type A dilated by a factor of £ and
is also a CAT(0) space. As a cell complex, a dilated column is the union of
¢5=1 ordinary columns of R¥ tiled by orthoschemes.

Some of these dilated columns are of particular interest.

Definition 8.9 ((k,n)-dilated columns). Let n > k > 0 be positive integers
and let C be the full subcomplex of the orthoscheme tiling of R¥ restricted
to the vertices of ZF that satisfy the strict inequalities

T < T < - <X <XT1+N.

We call C the (k,n)-dilated column in R*. A point x € Z* is in C if and only
if its coordinates are strictly increasing in value from left to right and the
gap between the first and the last coordinate is strictly less than n. To see
that the subspace C really is a dilated column of R¥, note that it is defined
by the weak inequalities

$1—1<{E2—2<"‘<Ik—k§<l‘1—(k}+1)+n.

There is a natural bijection between the sets of integer vectors satisfying
these two sets of inequalities that uses the usual combinatorial trick for
converting between statements about strictly increasing integer sequences
and statements about weakly increasing ones. From the weak inequalities
we see that the (k,n)-dilated column C is a (n — k) dilation of an ordinary
column and thus a union of (n — k)*~! ordinary columns.

Example 8.10 ((2, 6)-dilated column). When k& = 2 and n = 6, the defining
inequalities are z < y < x + 6 and a portion of the (2, 6)-dilated column C is
shown in Figure [8] The meaning of the vertex labels used in the figure are
explained in Example Note that C is metrically an ordinary column
dilated by a factor of 4, its cell structure is a union of (6—2)2~! = 4 ordinary
columns, and it is defined by the weak inequalities t + 1 < yandy < x + 5
or, equivalently, r — 1 <y—2<x—3+6.

Part 3. Boundary Braids

We now come to our main topic of study: boundary braids. This part begins
by introducing orthoscheme configuration spaces and describing the specific
case of an oriented n-cycle. We then prove the fact that if several strands
are individually boundary parallel then they are simultaneously boundary
parallel. Finally, we study dual simple boundary braids in detail and use
our findings there to prove the main theorems.
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9. CONFIGURATION SPACES

In this section we introduce a new combinatorial model for the configuration
space of k points in a directed graph and, more generally, k£ points in an
orthoscheme complex. In contrast to the configuration spaces for graphs
used by Abrams and Ghrist, which are cubical [Abr00, [Ghr01], our models
are simplicial.

Definition 9.1 (Products of graphs). Let I" be a metric simplicial graph
with oriented edges of unit length. Note that I' can be regarded either as
an ordered simplicial complex or as a cubical complex and we can form di-
rect products of several copies of I' in either context. The resulting spaces
will be naturally isometric but their cell structures differ. We denote by
Propg (T',[4) respectively PRODy(T',[]) the orthoscheme product respec-
tively cubical product of k£ copies of I'.

Example 9.2 (Orthoscheme product spaces). If T' is an oriented edge of
unit length then PrRODg(T',[) is a unit k-cube while PRODg(I',) is the
simplicial subdivision of the k-cube described in Example frisR
subdivided in edges of unit length then PRODg(T",[]) is the standard cubing
of R* while ProDy, (T, 1) is the standard orthoscheme tiling of R* described
in Example

Recall from Definition that the (topological) configuration space of k
points in T' is T* — D1aG(T) where D1aGy(T) is the thick diagonal. To
obtain a combinatorial configuration space, we take the full subcomplex
supported on this subset with respect to either of the above cell structures.
For the cubical structure this was first done by Abrams [Abr00]. With the
simplicial cell structure in place, our definition is completely analogous.

Definition 9.3 (Orthoscheme configuration spaces). Let I' be a metric sim-
plicial graph with oriented edges of unit length. The orthoscheme configu-
ration space of k labeled points in an oriented graph I" is the full subcomplex
Conrg (T, 1) of PrROD,(T', ) supported on PROD (T, 1) — D1AG,(T"). Thus,
a closed orthoscheme of PROD (T, [A) lies in CONFy (T, 1) if and only if it is
disjoint form DIAG(T"). The orthoscheme configuration space of k unlabeled
points is UCONF(I',[) = ConFg(T,[1)/SyMm.

Remark 9.4 (Open questions). Since the simplicial structure for the prod-
uct PRODE(T',[A) is a refinement of the cubical structure of Propg (T, ),
the orthoscheme configuration space CONF(T',[A) lies between the topolog-
ical configuration space CONFy(I") and the cubical one Conrg(I',[J). It is
therefore interesting to compare it to either, specifically, to determine under
which conditions two of them are homotopy equivalent. In Example
we will see that the orthoscheme configuration and the cubical configuration
space are generally not homotopy equivalent. Cubical configuration spaces
are known to be non-positively curved [Abr00]. We do not know whether
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the same is true of orthoscheme configuration spaces. However, in the next
section we will see that they are in the most basic case where I' is a single
oriented cycle.

10. PoINTS ON A CYCLE

For the purposes of this article, we are primarily interested in the or-
thoscheme configuration spaces of a single oriented cycle. In this section,
we treat this case in detail.

Definition 10.1 (Oriented cycles). An oriented n-cycle is a directed graph
I',, with vertices indexed by the elements of Z/nZ and a directed unit-length
edge from i to i + 1 for each i € Z/nZ. In illustrations we draw an oriented
n-cycle so that it is the boundary cycle of a regular n-gon in the plane
with its edges oriented counter-clockwise. The graph I',, can be viewed as
R/nZ. Similarly, the orthoscheme product space PROD(I',,lJ) is an k-
torus R¥/(nZ)* where R¥ carries the orthoscheme structure described in
Example

For the rest of the section I';, will denote an oriented n-cycle.

Example 10.2 (Cubical vs. orthoscheme). In both the cubical and or-
thoscheme cell structure of (I',,)™ the only vertices not on the thick diagonal
DI1AG,(T',) are the n-tuples where each entry is a distinct vertex of T',.
These form a single SyMy-orbit. In the cubical structure no edge avoids
DI1AG,(T',), so CONF,(T',,,[) is a discrete space consisting of n! points and
UCoONF,(I'y,[) is a single point.

In the orthoscheme structure, there are edges that are disjoint from
D1AG,(I'y,). These correspond to the motion where all n points rotate
around the n-cycle simultaneously in the same oriented direction and they
are longest edges in the top-dimensional orthoschemes. No other simplices
avoid D1AG,,(I';). Thus CONF,(I',,l4) has (n — 1)! connected components
each of which is an oriented n-cycle. The unordered configuration space
UCoNF,(I',,,[1) is a circle consisting of a single vertex and a single edge.

This illustrates that the cubical and the orthoscheme configuration spaces
are generally not homotopy equivalent. Note that in this example, the topo-
logical configuration spaces are homotopy equivalent to the orthoscheme
versions. However, reversing the orientation of a single edge makes the or-
thoscheme configuration spaces equal to the cubical ones and therefore not
homotopy equivalent to the topological ones.

The purpose of the present section is the following result.

Proposition 10.3 (Points on a cycle and curvature). Fach component of the
universal cover of CONFg(T'),) is isomorphic, as an orthoscheme complex, to
the (k,n)-dilated column and therefore CAT(0). In particular, CONFg(Ty)
and UCONFg(T',) are non-positively curved.
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FIGURE 8. A portion of the (2, 6)-dilated column, i.e. the full
subcomplex of the orthoscheme complex of R? on the vertices
satisfying the strict inequalities z < y < x + 6. The vertex
labels and the shaded regions are used to construct simplicial
configuration spaces for 2 labeled points in a 6-cycle and for
2 unlabeled points in a 6-cycle.

Proof. First recall that PROD, (I, [4) = PRODy (I, ) is R¥ with the struc-
ture described in Example (where the tilde denotes the universal cover
on both sides). Let C be the subcomplex obtained by removing the hyper-
planes of the form z; — z; = ¢ with i # j € [k] and ¢ € nZ and taking the
full subcomplex. Since these hyperplanes descend to the thick diagonal, we
see that CoNFy(T,) = C/(nZ)*.

Notice that these hyperplanes include the ones used to define the (k,n)-
dilated column in R* (Definition . Thus one connected component of
C is a (k,n)-dilated column in R*. Since SyMj; permutes the connected
components, each component is a dilated column. Thus each component of
C' is CAT(0) and, in particular, is simply connected.

Since both (nZ)* and Sym;y, act freely on C, both C' — ConFg(T,) and
C — UCONFg(T',) are covering maps and thus the configuration spaces
ConNFg(I',) and UCONFg(I',,) are both non-positively curved. O

We now give two examples which illustrate Proposition [I0.3}

Example 10.4 (2 labeled points in a 6-cycle). Figure [8 shows a portion
of the infinite strip that is the (2,6)-dilated column in R2. When this
strip is quotiented by the portion of the (6Z)2-action on R? that stabilizes
this strip, its vertices can be labeled by two labeled points in a hexagon.
The black dot indicates the value of its z-coordinate mod 6 and the white
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dot indicates the value of its y-coordinate mod 6. The rightmost vertex
of the hexagon corresponds to 0 mod 6 and the residue classes proceed in
a counterclockwise fashion. The five hexagons on the y-axis, for example,
have z-coordinate equal to 0 mod 6 and y-coordinate ranging from 1 to
5 mod 6. One component of the labeled orthoscheme configuration space
CONFy(X, 1) is an annulus formed by identifying the top and bottom edges
of the region shown according to their vertex labels. Actually, in this case
there is only (2 — 1)! = 1 component, so the annulus is the full labeled
orthoscheme configuration space.

Example 10.5 (2 unlabeled points in a 6-cycle). The unlabeled orthoscheme
configuration space is formed by further quotienting the labeled orthoscheme
configuration space to remove the distinction between black and white dots.
In particular the 5 vertices shown on the horizontal line y = 6 are identified
with the 5 vertices on the vertical line x = 0. This identification can be
realized by the glide reflection sending (z,y) to (y,x + 2), a map which also
generates the unlabeled stabilizer of the (2,6)-dilated column. The heavily
shaded region is a fundamental domain for this Z-action and the unlabeled
orthoscheme configuration space is the formed by identifying its horizon-
tal and vertical edges with a half-twist forming a Mobius strip. The heavily
shaded labels are the preferred representatives of the vertices in the quotient.

11. BOUNDARY BRAIDS

We now come to our main object of study, boundary braids. The goal of
this section is a key technical result saying that if certain strands of a braid
can individually be realized as boundary-parallel strands then they can be
realized as boundary parallel strands simultaneously.

Lemma 11.1 (Boundary parallel rotation Braids). Let A < [n] not be a
singleton and define

B={b|b¢gAorb+1e A}

Then 64 is a (B,-)-boundary braid but not a (b,-)-boundary braid for any
be[n]— B.

Proof. For A = # and A = [n] the statement is clear so we assume 2 <
|A| < n from now on.

The first statement is straightforward by considering the standard rep-
resentative of §4, given by constant-speed parametrization of each strand
along the boundary of the subdisk D 4.

For the second statement, let b€ [n] — B. Then be Abut b+ 1¢ A. Fix
the standard representative f of d4. Let ¢ = (b—1)-PERM(J4), meaning that
the strand f*~! ends in c¢. Thus c € {b—1,b}. We consider a disc U < I x D,,
that is bounded by the following four paths in 6(I x D,,): the strand f*=1, the
strand ffill, the straight line in {0} x D,, connecting (0, pp—1) and (0, pp+1),



BOUNDARY BRAIDS 33

and the straight line in {1} x D,, connecting (1,p.) and (1, pp+1). Now note
that since b € A, the strand f° does not end in p, and therefore not in
the set {pc, ..., pp41} which is either {py, pp+1} or {pp—1, b, pp+1}, depending
on whether or not b — 1 € A. As a consequence the strand f° starts on
one side of the disk and ends on the other side, and thus it transversely
intersects the disk an odd number of times. Since the parity of the number of
transverse intersections is preserved under homotopy of strands and strands
which remain in the boundary have no such intersections, we may conclude
that the (b,-)-strand is not boundary parallel in any representative for d4.

O

Definition 11.2 (Wrapping number). Let 5 be a (b, -)-boundary braid and
let f be a representative for which the image of f° lies in the boundary of
D,,. If we view the boundary of D,, as an n-fold cover 7: ¢D,, — S! of the
standard cell structure for S! with one vertex and one edge, then boundary
paths in 0D,, that start and end at vertices of D,, may be considered as lifts
of loops in S*. More concretely, let ¢ : R — 0D,, be a covering map such that
©(i) = p; for each i € Z. Let f° be any lift of f° via this covering and define
the wrapping number of the (b, ¢)-strand of f to be w(b,c) = fo(1) — £°(0).
A slightly different description is as follows. Consider the diagram
fb
[0,1] —— 0D,

Jo~1 s
b
Sl —*> Sl

where the left map is the quotient map that identifies 0 and 1. The map f°
is defined by commutativity of the diagram. Then the wrapping number of
f? is the winding number of f2.

Notice that the wrapping number is n times what one would reasonably
define as the winding number.

Lemma 11.3. The wrapping number is well-defined.

Proof. Let f be a representative of the (b, -)-boundary braid § for which f?
lies in the boundary; we temporarily denote the wrapping number by w(b, -)
to indicate the presumed dependence on our choice of representative. If f
and f’ both represent /3, then f’- f~! is a representative for the trivial braid
with wg. r-1(b,b) = wy(b,-) —wy (b, -). It therefore suffices to show that each
strand in every representative of the trivial braid has wrapping number zero.

Now, let f be a representative of the trivial braid 1 for which f° lies in
the boundary, and suppose that the wrapping number wy(b,b) # 0. If fb'
is another strand in f, then we may obtain a map to the pure braid group
PBRAID, by forgetting all strands except f? and f¥. The image 3’ of the
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trivial braid under this map may be written as an even power of Jo since
892 generates PBRAIDy, and the wrapping numbers can then be related as
w1(b,b) = Gwg (b,b). However, it is clear from the procedure of forgetting
strands that the resulting braid in PBRAIDs is trivial, and since every braid
in PBRAIDy has both strands boundary parallel, we know that wg (b,b) is
zero, and thus so is wy (b, b). Therefore, every representative for the trivial
braid has trivial wrapping numbers, and we are done. O

Lemma 11.4. If 8 and v are braids in BRAID,, such that B is a (b,1)-
boundary braid and v is a (V',-)-boundary braid, then (3 is a (b, -)-boundary
braid with wrapping number wg~(b) = wa(b) + w4 (V).

Proof. If f and g are representatives of 8 and -y respectively such that fé’, and
g" are boundary strands then fg is a representative of 87 such that (fg)®
is a boundary strand. For this representative it is clear that the wrapping
numbers add up in the described way. ([

Lemma 11.5. Let B < [n] and 8 € BRAID,,. Then B € F1xX,(B) if and
only if wg(b) =0 for allbe B.

Proof. If B € F1x,,(B), then there is a representative f of § in which each
(b, -)-strand is fixed and thus wg(b,-) = 0.

For the other direction, we begin with the case that B = {b}. Let f be a
representative of 5 € BRAID, (B, -) with the (b, -) strand in the boundary of
D,,, and suppose that wg(b,-) = 0. Then the strand f? begins and ends at
the vertex pp, and there is a homotopy f(t) of f which moves every other
strand off the boundary without changing f°. That is, fb/(t) ¢ 0D,, whenever
b € [n] — {b} and 0 < ¢t < 1. After performing this homotopy, we note that
f(1) is a representative of 5 in which the (b, b)-strand has wrapping number
0 and there are no other braids in the boundary. Thus, there is a homotopy
of this strand to the constant path, and therefore 5 € Fi1x,,({b}).

More generally, if B < [n], then the set of braids § € BRAID, (B, ) with
wg(b,-) = 0 for all b € B are those which lie in the intersection of the fixed
subgroups F1x,,({b}). By Proposition this is equal to F1x,(B) and we
are done. O

Lemma 11.6. Let by,...,bx be integers satisfying 0 < by < --- < b < n
and suppose that [ € BRAID,, is a (b;,-)-boundary braid for every i. Then
bl + wg(bl, ) < b2 + wg(bg, ) < e < bk + ZU5(bk, ) < bl + wg(bl, ) +n.

Proof. Note that it suffices to prove that
b + wg(bi, )< bj + wg(bj, ) < b + ’wg(bi, )+n
whenever ¢ < j or, in other words, that

wg(bj,-)—wg(bi,-)e{bi—bj+1,...,bi—bj+n—1}.
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As a first case, suppose both wg(b;, -) and wg(bj, ) are divisible by n. Then
forgetting all but the (b;,b;)- and (bj, b;)-strands of 3 yields a pure braid
B € PBRAIDy which can be expressed as § = 8% for some ¢ € Z since
PBRAIDy = (65%). Then

n
’u)g(bh, bh) = §w5/(bh, bh) =nf

for each h € {i,j} and since every two-strand braid has simultaneously
boundary parallel strands with equal wrapping numbers, we conclude that
wg(bs, bi) = wg(b;, bj). Therefore, wg(b;,b;) — we(bi, b;) = 0, which satisfies
the inequalities above.

For the general case, define

Y= ,B(Sn_wﬁ(bi’.)

and observe that w,(b;,-) = 0. Note that w-(b;, ) is not congruent to b; —b;
mod n; if it were, then the (b;,-)- and (b;,-)-strands of v would terminate
in the same vertex. Let e then be the representative of w-(b;,-) modulo n
that lies in the interval {b; —b; +1,...,b; —bj + n —1}. Then

@ =)o)
has both its (b;,-)- and its (bj;,-)-strand boundary parallel with wrapping
numbers
Wq(bi,-) =0 and wq(b;, ) =0 mod n.
It follows from the case initially considered that the congruence on the right

is actually an equality.
Tracing back we see that wy(b;,-) = e and

wg(bj,~)—w5(bi,-) =6€{bi—bj-i-l,...,bi—bj-i-n—l}
as claimed. O

In what follows we will see that the inequalities given above are sharp in the
sense that any tuple of numbers satisfying the hypotheses for Lemma [11.6
can be realized as the wrapping numbers for a braid.

Lemma 11.7. Let by,...,b, and wy,...,wg be integers satisfying 0 < by <
o< b <noand

by +wy <by+wo <...<bp+wg <b +wy +n.

There is a braid € BRAID,, such that [ is a (B,-)-boundary braid for
B = {b1,... by} with wg(b;,-) = w; for each i.

Proof. First let w = min{wy, ..., wx} and note that for any boundary braid
B’ € BRAID,(B,-) the braid 8 = (6" has wrapping numbers wg(b,-) =
wg (b, ) + w. It therefore suffices to show the claim in the case where some
w; is 0 and thus all w; are in {0,...,n — 1}. We assume this from now on.
Now the proof is by induction on max{ws,...,wy}, the case v = 0 being
trivial. Let By = {b; | w; = 0} and B>1 = {b; | w; = 1}. We claim that
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there is no b € By with b — 1 € By. If there were, then necessarily b = b;
and b — 1 = b;_1 for some index i (with the understanding that by = by, and
b_1 = bg_1), but then

bi—1 +wi—1 2 bi—1 +1 =0 =b +w;
and this violates the assumption.
Let ' be a braid satisfying the claim for

b,»= bi wi:0
t b +1 w; =1

and w, = min{w; — 1,0}, where we note that such a braid exists by the
induction hypothesis. Let A = B>y u{b+ 1| b e B>1}. We claim that
B = 648" is as needed. Indeed, 8 is a (B, -)-boundary braid by Lemmam
and it has the following wrapping numbers:

N wﬁ/(b+1,‘)+1 be B>
wg(b,) = { wg (b, -) be By.

Thus wg(b;, -) = w; for every i. O

Proposition 11.8. Let 8 € BRAID,,. All boundary parallel strands of 3 are
simultaneously boundary parallel. That is, if 8 is a (b,-)-boundary braid for
every b € B, then it is a (B,-)-boundary braid.

Proof. Let B < [n] and suppose 5 € BRAID,, is a (b,-)-boundary braid
for each b € B. If we write B = {by,...,bp} with 0 < by < by < --- <
by < n, then the wrapping numbers wg(b;,-) satisfy the inequalities given
by Lemma [11.6] Therefore by Lemma there is a (B, -)-boundary braid
~v € BRAID,, with the same wrapping numbers as 5. By Lemma Byt
is a (b,b)-boundary braid with wg.-1(b,b) = 0 for each b € B. Applying
Lemma we see that By~! € Fix,(B) and, in particular, it is a (B, -)-
boundary braid. It follows that 3 = (87~ 1)y is a (B, -)-boundary braid, as
well. O

As a consequence of Proposition we obtain the following proposition
which we state in analogy with Proposition [4.15]

Corollary 11.9. Intersections of sets of boundary braids are sets of bound-
ary braids. Concretely, if B < [n], then

BRAID,(B,-) = ﬂ BRAID, ({b}, -)
beB

and equivalently,
BraID,(C v D, -) = BRAID,(C, ) n BRAID, (D, -)
for any C, D < [n].
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12. DUAL SIMPLE BOUNDARY BRAIDS

We start studying boundary braids in more detail by exploring the poset of
boundary braids that are also dual simple.

Definition 12.1 (Boundary braids). Let B < [n]. We denote the subposet
of DS,, consisting of (B,-)-boundary braids by DS, (B,-). Notice that if
B € DS,,, then the wrapping numbers satisfy wg(b,-) € {0,1} for each b € B.

Definition 12.2 (Boundary partitions). Let B < [n]. We say that a non-
crossing partition m € NC,, is a (B, -)-boundary partition if each b € B either
shares a block with b+ 1 (modulo n) or forms a singleton block {b} € 7. We
denote by NC,, (B, -) the poset of all (B, -)-boundary partitions.

Definition 12.3 (Boundary permutations). Let B < [n]. We say that 7 €
NC,, is a (B, -)-boundary permutation if for all b € B, b-o, € {b,b+1} (modulo
n). We denote the sets of (B, -)-boundary permutations by NP, (B, -).

These definitions fit together in the expected way.

Proposition 12.4. Let B < [n]. The natural identifications between NC,,
DS,,, and NP,, restrict to isomorphisms

DS, (B,-) = NC,(B, ) = NP,(B,").

Proof. Fix B < [n]. Let m € NC,,(B,-) and consider the corresponding dual
simple braid é, € DS,,. It is
o= | ] da

Aem

4]>2
It is clear that 0, is a (B,-)-boundary braid if and only if each §4 is. By
Lemma this is the case if b € A implies b+ 1 € A for every b € B
and every (non-singleton) A. This matches the definition for 7 to be a
(B, -)-boundary partition.

Now let o, be the permutation corresponding to w. Note that b-o, = b
if and only if {b} is a block of m and that b- o, = b+ 1 if and only if b and
b+ 1 lie in the same block. From this it is clear that o is a (B, -)-boundary
permutation if and only if 7 is a (B, -)-boundary partition. O

Example 12.5. Let B = {2,4,5} < [5]. Then NC5(B, ) is a subposet of
NC5 with 12 elements, depicted in Figure [9]

We now define two maps on the posets described above. The first map
takes a braid to one fixing B while the second takes it to a canonical braid
with the same behavior on the specified boundary strands.
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FIGURE 9. The poset of boundary partitions NC5(B,-),
where the upper-right vertex of each noncrossing partition
is labeled by 1 and elements of B = {2,4,5} are labeled by
a white dot. The blue and red edge colors serve to illustrate
the direct product structure described in Proposition

Definition 12.6 (Fix?). For B < [n] we define the map
Fix?: NC, — NC,(B,")
m—{A—B|Aen}u{{b}|be B}.
Thus Fix®(r) is obtained from 7 by making each b € B a singleton block.
We also denote by Fix? the corresponding maps NP, — NP, (B,-) and
DS,, — DS,(B,-). We call an element in the image of F1x? a B-fiz parti-
tion, braid, or permutation, and we refer to the entire image by the short-

hand notation F1x(NC,(B)). We adopt similar notations for the analogous
settings of NP, (B, -) and DS, (B, ).

Lemma 12.7. Let B < [n].

(1) for m € NC,(B), Fix?(x) is the mazimal B-fiz element below ;
(2) FIx®B preserves order;
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o Fix(o) MovVE(0)

FicURE 10. The noncrossing partitions corresponding to o,
Fix?(0), and MovE® () as described in Example[12.11] The

white dots form the set B.

(3) FixB(r) < 7 for all m € NCy;
(4) F1xP is idempotent, i.e. (F1xP)? = FixB;
(5) if « € DS,, is B-fir and aff € DS,, then FixP(ap) = aF1xP(B);

Proof. The first statement is clear from the definition and the second, third
and fourth statement follow from it.

In the fifth statement aF1xZ(8) < af is B-fix so it is < Fix?(aB) by
(1). Conversely, o 'FIxB(B) < B is B-fix so it is < Fix?(8) by [@. O

Lemma 12.8. F1x(NC,,(B)) = DS,, nF1x,(B).

Proof. A braid 6, € DS,, lies in F1x(NC,,(B)) if and only if every be B is a
singleton block of 7 if and only if d, € F1x,(B). O

Definition 12.9 (Movi®). For B < [n] we define the map
Move®?: DS, (B,-) — DS,(B,-)

by the equation &, = Fix?(6;)MovEe?(d,). We also denote by MovE® the
corresponding maps NC,(B,:) — NC,(B,-) and NP, (B,:) — NP, (B,").
We refer to the image of MOVE? by the shorthand MovE(NC,, (B, -)), with
analogous notations for NP, (B, -) and DS, (B, -).

Lemma 12.10. The map MoVE? is well-defined, i.e. F1xB(5,) 6, is a
dual simple braid for each m € NC, (B, ).

Proof. We know from Lemma that Fix®(r) < 7. Thus by Proposi-
tion there is a n’ such that Fix?(6;)0, = d;. Then Move?(5,;) =
Ot O
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Example 12.11. Let 0 = (1234 56)(7 89) and B = {2,4,5,7}. Then
we have F1xZ(o) = (1 3 6)(8 9) and Move®(0) = (2 3)(4 5 6)(7 8). See
Figure [12]

Although the output of MOVE? is less easily described than that of Fix?,

both maps satisfy many similar properties. Mirroring Lemma we now
describe several properties of the Move? map.

Lemma 12.12. Let B < [n].

(1) for each © € NC,,(B), Move®(r) is the minimal ©' < 7 such that
ws_, (b,-) = ws_(b,-) for each b e B;

(2) MoVE®? preserves order;

(3) MoveP (7) < 7 for all m € NCy,;

(4) MovE® is idempotent, i.e. (Move®P)? = Move?.

Proof. Suppose that ¢,/ is a dual simple braid with 7’ < 7 and wrapping
numbers which satisfy ws, (b,) = ws_(b,-) for all b € B. Then 6,6}
is a dual simple braid by Proposition [3.5 and is B-fix by Lemma [12.§
Hence, by Lemma (57r5;,1 < Fix?(6,) and by rearranging, we have
that F1xZ(0,) "6, < 0 and thus Move? (6,) < 0.

The second statement follows since for each b € B, the wrapping num-
ber wg(b, ) is monotone with respect to NC,,(B,-). The third and fourth
statement are immediate from the first. ([l

The map Move? is multiplicative in the following sense.

Lemma 12.13. Let B < [n]. Let § € DS, (B,B’) and ' € DS, (B’,") be
such that B € DS,(B,-). Then Move®(88") = Move® (8)Move®? ().

Proof. By Lemma [12.12{[2)), we know that Move?(8) < Move®(38’) and
thus by Proposition Move? (8)~'Move?(84') is a dual simple braid.

By Lemma this braid has B’-indexed wrapping numbers which are
equal to those of MOVEB/(B’). Hence, by Lemma [12.12, we know that

Move?' (8) < Move? (8)"'Move? (38').
Equivalently, we have
Move? (8)Move? (8') < Move? (38)

in the partial order on BRAID,, and thus Move? (3)Move?' (8') is a dual
simple braid. Since this braid has the same B-indexed wrapping numbers

as Move®?(3), another application of Lemma tells us that
Move? (88") < Move? (8)Move? ().
Combining the above inequalities, we have
Move? (8)Move? (8) < Move®(83') < Move? (8)Move? (3')
and therefore Move? (88') = Move®? (8)Move?' (8'). 0
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We now study at the structure of F1x(NC,,(B)) and MOVE(NC,,(B, -)) inside
NC,(B,").

Remark 12.14 (Minima and maxima). The identity braid is clearly the
minimal element for both Fi1x(DS,,(B)) and Move(DS,(B,-)). Since Fix?
and MovE? are order-preserving maps, the maximal elements are Fix?(¢)
and MovEeB(9), respectively.

Lemma 12.15. Let B C [n]. Then FixB(Move®?(6,)) is the identity braid
for all m € NC,(B,-). In particular, the intersection of FIX(NC,(B)) and
MOoVE(NC,, (B, ")) contains only the discrete partition.

Proof. Let m e NC,,(B,-) be arbitrary. Then
Fix?(Move? (6;)) = Fix? (Fix?(6,)716,) = FixB(5,) 'FixB(6,) = 1

by Lemma [12.7([]). The second claim follows directly from the wrapping
number characterizations of FIx(NC,,(B)) and MoVE(NC,(B,-)) given in
Definition [2.6] and Lemma O

We now prove the main result of this section.

Proposition 12.16. Let B < [n]|. Then NC,(B,") is isomorphic to the
direct product of the subposets FIX(NC,(B)) and MOVE(NC,,(B,-)).

Proof. Since F1x? and Move? are order-preserving maps on NC,(B,-), the
map which sends 7 to the element

(Fix? (), Move? (1)) € FIX(NC,(B)) x Move(NC,(B,-))

is order-preserving as well.
Suppose that Fix?(r) = Fix? (') and Move? (1) = Move®?(n/). Then
by definition of MoOVE? we have
Fix?(6;) 10, = FIxB(6,) 100

and thus 6, = d,/, so the map is injective.

To see surjectivity, let 7 € FIX(NC,(B)) and 7" € MOVE(NC, (B, ")) be
arbitrary and let 8 = §,;0,». Note that in the partial order on BRAID,
obtained by extending that of NC,,

B = FixB(6,)Move? (6,/)
< Fix®(6,,)Move? (6,,)
<oy
and thus § is a dual simple braid. Then
Fix?(8) = Fix?(6,;)F1x?(6+) = F1xP(6;) = 6,

by Lemma [12.7)(), Lemma [12.15] and Lemma [12.7][)), showing also that
Move?(8) = 6.
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It remains to see that incomparable elements are mapped to incomparable
elements. So suppose m and 7’ have the property that Fix?(r) < Fix?(«)
and Move®?(r) < Move®?(#/). Then

ox = FixP (6, )Move? (6,)

< F1xP (6, )Move? (6,)

< FixP (6, )Move® (6,)
< O
by Proposition so m and 7’ are comparable as well. O

We close by proving the following extension of Lemma [12.15

Lemma 12.17. Let B < [n]. An element f € MOVE(DS,, (B, -)) is uniquely
determined by the tuple (wy(B))pen- In particular, MOVE(DS, (B, B')) con-
tains at most one element.

Proof. Suppose 6, and 0, are dual simple braids in DS, (B,-) with the
property that ws_(b,-) = ws_,(b,-) for each b € B. Each wrapping number
is either 0 or 1, and these can be characterized within 7 and 7’ by the
fact that for each b € B, either {b} is a singleton or b and b + 1 (modulo
n) share a block. This property is preserved under common refinement,
SO0 Opam has the same B-indexed wrapping numbers as d; and d,. By
definition, d; rr < 6 and 0 A < 0/, and we know by Lemma that
MOVE? (6, /) < MOVEP(6;) and MOVE® (6, /) < MOVEP (6,+). Finally,
since all three of these braids have the same B-indexed wrapping numbers,
we may conclude by Lemma that

Move? (6;) = MOVED (6, /) = MOVEP (6,)

and we are done. O

13. THE COMPLEX OF BOUNDARY BRAIDS

In this section, we describe the subcomplex of the dual braid complex which
is determined by the set of boundary braids.

Definition 13.1 (Complex of boundary braids). Let B < [n]. The complex
of (B, -)-boundary braids, denoted CPLX(BRAID, (B, ")), is the full subcom-
plex of CPLX(BRAID,,) supported on BRAID, (B, ).

The boundary strands of a (B, -)-boundary braid define a path in the config-
uration space of | B| points in dP. The following lemma is the combinatorial
version of this statement. Recall from Definition that we regard the
edges of CPLX(BRAID, (B, )) as labeled by elements of NC}:. Note also that
the edge from 8 € BRAID, (B, B’) to ' € BRAID, (B, B”) carries a label in
NC,(B', B").
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Lemma 13.2. Let B < [n]. There is a surjective map
BDRY” : CPLX(BRAID, (B, -)) — UCONF (T, )
that takes 3 € BRAID, (B, B’) to B'.

Proof. Let 8 € BRAID, (B, B’). An edge out of 3 labeled m € NC,,(B',") is
taken to the edge of UCONF|p|(I'y, 1) out of B’ that keeps b e B’ fixed if it
forms a singleton block of 7 and that moves it to b 4+ 1 if it does not. The
(boundary partition) condition that b and b+ 1 share a block of 7 for every
b € B’ ensures that this is compatible with how vertices are mapped. It also
ensures that if b+ 1 € B as well, then b + 1 also moves, and so the edge
actually exists in UCONF|p| ([, D).

To verify surjectivity we show that for any edge e from B’ to B” in
UCONF|g|(I'n,lJ) and any 3 € BRAID,, (B, B’) there does in fact exist a
7 € NC,(B’, B”) such that the edge out of 3 labeled 7 is taken to e. If B =
B’ = [n] this is achieved by the maximal element 7 = {[n]}. Otherwise the
fact that the edge e exists means that for every interval {7, ..., j} (modulo n)
of B either that same interval or the interval {i +1,...,j + 1} is in B’. The
needed partition 7 is the one whose non-singleton blocks are the intervals
{i,...,j + 1} where the second possibility happens. O

Our goal is to show that BDRY? is in fact a trivial bundle. To do so, we
use the local decomposition results from Section to obtain a splitting.
More precisely, we want to construct a map SPLIT? that makes the diagram

Ummm(rn,Z) ———————————— » CPLX(BRAID, (B, ))

(13.1)
cov BDRY?Z

UCONF|B|(Fn,Z)
commute (where COV denotes the covering map).

Lemma 13.3. The map spLiT? in (13.1)) exists. It is characterized (modulo
deck transformations) by the property that if an edge in its image is labeled
by e NC,(B',-) then Move® (x) = .

Proof. We will use the shorthands U%F, UCONF and CPLX. Suppose
there is an edge from V' to V” in UCONF. Under COV it maps to an
edge from B’ to B” in UCONF. If 3’ is a vertex above B’ (with respect to
BDRY?) then any vertex 3" = (3’6, with 7 € NC,(B’, B") has the property
that BDRY?(3”) = B”. Our characterization states that if 3’ = sprLir?(V’)
then sPLITE (V") should be the 8 with m € Move? (NC,,(B/, B")), which is
unique by Lemma Similarly, if sSPLIT? (V") has already been defined,
this uniquely characterizes sPLIT? (V).
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If we choose a base vertex V € UCONF above B , declare that spLIT? (1)
is the vertex labeled by the identity braid, and extend the definition accord-
ing to the above rule, we get a map that is defined everywhere since UCONF
is connected (by edge paths).

It remains to see that this map is well-defined, i.e. that extensions along
different edge paths agree. Since UCONF is simply connected, it suffices to
check this along 2-simplices. This amounts to the requirement that if § €
BRAID,, (B, B'), 6 € Move? (DS, (B’, B")) and 6+ € Move?" (DS, (B”",-))
are such that 6,6, € DS,,(B',-) then MOVE? (8,/6,#) = 86, This is true
by Lemma [12.13 U

Definition 13.4 (Move complex). Let B < [n]. We denote the image of
spLITP by CPLX(MOVE,(B,)) and call it the move complex associated to
B. Tts vertex set is denoted MOVE, (B, -).

Corollary 13.5. Let B < [n]. The corestriction of SPLIT to the move
complex CPLX(MOVE,(B,-)) is an isomorphism. In particular, the move
complex is a CAT(0) subcomplex of the dual braid complez.

Proof. The corestriction of SPLIT to CPLX(MOVE,(B,-)) is a covering map
by Lemma|13.3] We need to show that it is injective. To see this, recall from
Proposition [10.3| that U/C\Oﬁlﬂ B|(T'n, ) is isomorphic to a dilated column.
Let (b1,...,br) with 0 < by < ... < by < n be a basepoint above B in the
dilated column. Note that the edge from (by,...,bg) to (b1 +¢e1,...,bk +¢x),
with (g;); € {0,1}* is taken by SPLIT to a (B, -)-boundary braid with wrap-
ping numbers (e1,...,ex). It follows more generally that coordinates of the
dilated column relative to the basepoint correspond to wrapping numbers.
In particular, SPLIT is injective. U

If we develop the image of F1x? in a similar way to how we just developed
MovVE®, we encounter a familiar structure.

Definition 13.6 (Fix complex). The fiz compler CPLX(F1X,,(B)) is the full
subcomplex of CPLX(BRAID,,) supported on FI1X,(B).

Note that F1x,(B) is a parabolic subgroup and CrPLX(F1X,(B)) is an iso-
morphic copy of CPLX(BRAID,,_|g|). The fix complex does indeed relate to
the decomposition of NC,,(B,-) in a similar way as the move complex:

Lemma 13.7. The edges out of B € Fix,(B) that lie in CPLX(F1X,(B))
are precisely those labeled by elements of FIX(NC,,(B)). In particular, the
fiber of BDRY® over B’ is a union over translates of CPLX(F1x,,(B')).

Proof. The first claim is just Lemmal[I2.8] For the second claim note that the
edges out of 8 € BRAID,, (B, B’) that are collapsed to a point are precisely
those labeled by Fix? (NC,,(B’,-)). Thus the fiber of BDRY? over B’ is the
union over the SF1x,,(B’) for 5 € BRAID, (B, B'). O
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Proposition 13.8. Let B,B’ < [n] and let § € BRAID,(B,B’) be ar-
bitrary. There are unique braids FixP(B) € Fix,(B) and MoveB(p) €
MoVE, (B, B’) such that

B = FixB(B)Move?(3).

Moreover,

(1) Move? (Move®(3)) = Move?(B)
(2) Move®(8)~1 = Move? (871)
(3) if B’ € BRAID,(B',-) then MOVE,(38") = MoveZ (8)MoveZ' (5").

Remark 13.9. Note that by Lemma and Lemma the braids
Fix?(B) and Move?(53) coincide with the definitions in Section [12]if 3 €
DS, (B,").

Proof. Uniqueness amounts to the statement that F1X,,(B) "MOVE, (B, ) =
{1}, which follows from Corollary

Let 8 € BRAID,(B,B’). To define MovE®(3), consider the diagram
and let V' € UfC\O§F|B|(Fn, ) be the base vertex with spLiT?(V) = 1.
Let p be an edge path from 1 to 3 in CPLX(BRAID, (B, )), let ¢ = BDRY?(p)
and let ¢ be the path starting in V' and covering q. We take MOVEB(B) to be
the endpoint of ¢. The properties and (3) follow from the corresponding
properties of paths. Commutativity of @ shows that if we did the same
construction with S replaced by Move” (), we would again end up at
Move? (8), thus proving (.

Putting Fix?(8) = AMove?(8)~! it remains to verify that Fix?(p) e
F1x,,(B). We compute

Move(Fix?(8)) = Move? (3)Move? (Move® (8)~!)
= Move?(8)Move? (Move?(3))~!

— Move?(8)Move?(5)~!
=1.

This means that a path from 1 to Fix? (8) is mapped to a null-homotopic
path in the complex UCONF g (I'y,lJ). Thus Fix?(3) lies in the same
component of the fiber of BDRY? over B as 1, which by Lemma is
F1x,,(B). O

Lemma 13.10. If 8 € BRAID, (B, B') and 8’ € BRAID,(B’,-) then

1

FixZ(85") = FixP (§)FixP' (/) MoVs" ()",

where we use the shorthand zV to mean the conjugation y~'zy.
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Proof. By Proposition [13.8| we have on one hand
B8’ = FixP (88" )Move? (88) = Fix” (88 )Move” (8)Move? (8),
and on the other hand
88" = FixB(3)Move? (8)F1x?' (8 )Move? (8.
Solving for Fix?(38’) proves the claim. O
We are now ready to prove the main result of this article.

Theorem 13.11. Let B < [n]. The map
¢ : BRAID, (B, ) — F1x,(B) x MOVE, (B, )
8> (Fix?(8), Move? (8))
induces an isomorphism of orthoscheme complexes
CprLX(BRAID, (B, +)) =~ CrLX(F1x,(B)) @ CPLX(MOVE, (B, -))

which is, in particular, an isometry.

Proof. The map ¢ is a bijection by Proposition [13.8

For each € BRAID, (B, B’), we may restrict the domain of ¢ to the sub-
complex of simplices in CPLX(BRAID,(B,-)) with minimum vertex § and
the image of ¢ to the subcomplex of simplices in the orthoscheme prod-
uct CPLX(F1X,,(B)) @ CPLX(MOVE, (B, -)) with minimum vertex labeled by
(F1xB(B), MoveB(B)). It suffices for us to show that this restriction of ¢
is an isomorphism of orthoscheme complexes, and since both complexes are
flag complexes, we need only check this on the 1-skeleton.

The edges leaving § are parametrized by NC,,(B’,-), which by Proposi-
tion [12.16| is isomorphic to

(13.2) Fi1x?' (NC,.(B',-)) x Move? (NC,.(B', ).
The edges out of (F1x?(8), Move®?(B)) are parametrized by
(13.3) Fix®(NC,(B, ) x Move? (NC,.(B',-)).

Recall that for each m € NC,,(B’,-), we have
Move? (86,) = Move? (3)Move? (6,)
by Proposition and
FixB(86,) = FIxB(B)FixZ (5,)Move" ()7

by Lemma[I3.10] This shows that ¢ indeed induces an isomorphism between
the posets (13.2) and (13.3)), namely it is the identity on the second factor
and conjugation by Move” (B) on the first. Since these posets are isomor-
phic, the given restriction of ¢ is an isomorphism of orthoscheme complexes
and by Proposition this isomorphism is an isometry. g
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Corollary 13.12. Let B < [n]. If CPLX(BRAID,_p|) is CAT(0) then
CPLX(BRAID, (B, )) is CAT(0) as well.

Proof. By Theorem CPLX(BRAID, (B, -)) is isomorphic to the metric
direct product of CPLX(F1Xy(B)), which is isomorphic to the dual braid
complex CPLX(BRAID,,_p|), and CPLX(MOVE,(B, -)), which is CAT(0) by
Corollary The claim therefore follows from [BH99 Exercise I1.1.16(2)].

]

14. THE GROUPOID OF BOUNDARY BRAIDS

We close with a more algebraic view on the results of the last section. We
refer the reader to [Hig71, Chapter 12] and [DDG™ 15, Chapter II] for basic
background on groupoids.

Definition 14.1. The groupoid of boundary braids has as objects the finite
subsets of [n]. The morphisms from B to B’ are BRAID,, (B, B’) if |B| = |B/|
and empty otherwise. Composition is composition of braids.

Remark 14.2. To be precise one should say that morphisms are represented
by boundary braids as a braid may at the same time be a (B, B')-boundary
braid and a (C, C’)-boundary braid thus represent two different morphisms.
Since a morphism is uniquely determined by the braid and either its source
or its target, we trust that no confusion will arise from this imprecision.

Parabolic subgroups form a subgroupoid in a trivial way.

Definition 14.3. The groupoid of fix braids has as its objects the finite
subsets of [n]. The morphisms from B to B’ are F1x,,(B) if B = B’ and are
empty otherwise.

The groupoid of fix braids is normal in the following sense.

Lemma 14.4. If f € BRAID,(B,B’) and B’ € Fix,(B) then B8 €
Fix,(B’).

Proof. Note that if § is a (b,b')-boundary braid then wg(b) = —wg-1(b').
The claim now follows from Lemma [11.4] and Lemma [ITT1.5l O

The corresponding quotient morphism is the map BDRY? from Lemma m
that takes a (B, B')-boundary braid to a (B, B’)-path in the fundamental
groupoid of UCONF|g|(I'y,lJ). The upshot of the last section is that this
map splits with image move braids.

Definition 14.5. The groupoid of move braids has objects finite subsets of
[n]. The morphisms from B to B’ are the braids MOVE,, (B, B’), which are
images under SPLIT? of (B, B')-paths.
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It follows from Proposition and (3 that this is indeed a subgroupoid.
Now the algebraic conclusion can be formulated as follows, see [Witl, Sec-
tion 4] for a discussion of semidirect products.

Theorem 14.6. The groupoid BRAID,(+,-) is a semidirect product
F1x,(:) x MOVE,(-, ).

Specifically,

(1) every B € BRAID, (B, B') decomposes uniquely as B = pp with ¢ €
F1x,,(B) and € MOVE, (B, B');

(2) if pp = p'¢" with p, ' € MovVE,(B,B’), ¢ € Fix,(B) and ¢’ €
Fi1x,(B’) then pu = p'.

Proof. The first statement is Proposition [13.8] For the second note that
BDRY? (i) = BDRYZ(1/¢’) since elements of Fix,,(-) are mapped trivially
under BDRY®. Tt follows that MovE? (1/¢’) = Move® (¢u) = p. O
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