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Abstract. We give a local condition that implies connectivity at infin-
ity properties for CAT(0) polyhedral complexes of constant curvature.
We show by various examples that asymptotic-to-local results will be
difficult to achieve. Nevertheless, we are able to prove a partial converse
to our main local-to-asymptotic result.

1. Introduction

Given a finite complex X, it would be useful to have a local condition that

implies that the universal cover X̃ is n-acyclic or n-connected at infinity. For
example, in [4], simple link conditions are given that ensure that a simply
connected, CAT(0) cubical complex has prescribed topological properties
at infinity. Namely,

Theorem 1.1 (4.1 in [4]). Let X be a finite, non-positively curved cubical

complex. If the link Lk(v) of each vertex v is n-acyclic, and the link remains

n-acyclic whenever you remove a simplex from Lk(v), then the universal

cover X̃ is n-acyclic at infinity. Similarly, if Lk(v) is simply connected

and the link remains simply connected whenever you remove a simplex from

Lk(v), then the universal cover X̃ is simply connected at infinity.

The goal in this paper is to generalize Theorem 1.1 to arbitrary finite,
non-positively curved complexes. Although the statement of Theorem 1.1
does not carry over to the general case, the basic argument of [4] does extend.
In the general setting the key definition is that of a punctured link.

Definition 1.2 (Punctured link). Let X be a non-positively curved com-
plex, let σ be a cell in X, let p be a point in Lk(σ), and recall that the
“angular metric” induces a natural CAT(1) metric on Lk(σ). The punc-

tured link of σ at p is obtained by removing from Lk(σ) all points within
π/2 of p. The punctured link will be denoted PLk(σ, p). Notice that even
though a punctured link of σ is not in general a subcomplex of Lk(σ), it
nevertheless deformation retracts onto the maximal subcomplex of Lk(σ)
that is contained in PLk(σ, p). Moreover, if X is a cubical complex, then
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Lk(σ) minus the closed simplex containing p in its interior will deformation
retract to the exact same maximal subcomplex.

The following is our main result.

Theorem 1.3. Let X be a finite, non-positively curved complex. If for each

cell σ in X and for each p ∈ Lk(σ), the spaces Lk(σ) and PLk(σ, p) are

(n − |σ|)-acyclic then X̃ is n-acyclic at infinity. If in addition, the links

and punctured links of vertices are all 1-connected, then X̃ is n-connected at

infinity.

In the statement |σ| denotes the dimension of σ, the condition “(−1)-
acyclic” means “non-empty” while n-acyclic for n < −1 is vacuous.

At first glance it appears that an infinite number of conditions have been
hypothesized – since p can range over a continuum of points – thus making
the theorem difficult to apply. Since every punctured link deformation re-
tracts onto a subcomplex, however, one only needs to check the topology of
finitely many finite complexes in order to check these conditions. In partic-
ular, to establish that the universal cover of a finite non-positively curved
complex is n-acyclic at infinity, one only needs to compute the homology
of finitely many finite simplicial complexes. A similar type of concern can
be raised about checking whether a particular metric on a finite complex
is non-positively curved. Elder and McCammond [9], however, have shown
that this too can be checked by a finite process.

The property of being n-acyclic at infinity is closely related to the notion
of a duality group. A group G is a duality group if there is a dualizing module
D such that Hi(G,M) ' Hn−i(G,M ⊗ D) for all G-modules M . When
G admits a finite K(G, 1) whose dimension, n, equals the cohomological
dimension of G, then G is a duality group if and only if the universal cover
of this space is (n − 2)-acyclic at infinity. Thus, an immediate corollary
to Theorem 1.1 is that a finite n-dimensional non-positively curved cubical
complex whose links of vertices are (n − 2)-acyclic and remain (n − 2)-
acyclic when one removes any simplex in the link, has a duality group as its
fundamental group.

As in the cubical case, there is an immediate corollary about duality
groups.

Corollary 1.4. Let X be a finite, non-positively curved complex of dimen-

sion n. If for each cell σ ⊂ X, one has Lk(σ) and PLk(σ, p) are (n−|σ|−2)-
acyclic — for each point p ∈ Lk(σ) — then π1(X) is a duality group.

In Section 2 we quickly sketch the relevant definitions. The proof of
Theorem 1.3 is given in Section 3 and a partial converse is established in
Section 5. In between we give examples illuminating the murky connection
between end connectivity and local connectivity. In particular, we highlight
the difference between the punctured condition and the Cohen-Macaulay
property, and show that a full converse of Theorem 1.3 cannot hold. It is,
however, known to hold in some interesting cases, see [4] and [8].
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2. Definitions

We assume the reader is somewhat familiar with CAT(0) spaces. If not,
they should read [6].

Definition 2.1 (Non-positively curved complexes). In this paper, we take
finite non-positively curved complexes to be finite piecewise-Euclidean or
piecewise-hyperbolic polyhedral complexes satisfying the link condition (Def-
inition II.5.1 in [6]). A subdivision of such a complex allows us to restrict our
focus to simplicial complexes where each simplex is isometric to the convex
hull of a set of points in general position in

�
n or � n . The universal cover

of such a complex will be called a CAT(0) complex.
Links of simplices in non-positively curved complexes are defined as they

are in any simplicial complex, although in the non-positively curved setting
they come with a natural piecewise spherical metric. For any point p in
a non-positively curved complex its space of directions consists of a metric
sphere of sufficiently small radius that the sphere is contained in the first
cellular neighborhood of the simplex supporting p. The space of directions
can also be given a piecewise spherical metric, viewing it as the spherical join
of the unit tangent bundle at p (in the simplex supporting p) with the link of
the simplex supporting p. The metric structure of the space of directions at
a point p does not depend on the simplicial subdivision, although obviously
the combinatorial structure does.

Definition 2.2 (Topology at infinity). Topology at infinity is the study of
deep topological properties of complements of compact sets, where “deep” is
a technical term as in the work of Kapovich and Kleiner [11]. It suffices for

this paper to let X̃ be the universal cover of a finite, aspherical, simplicial

complex. We say X̃ is m-connected at infinity if given any compact C ⊂ X̃

there is a compact D ⊃ X̃ such that any map φ : Sn → X̃ −D extends to

a map φ̂ : Bn+1 → X̃ − C for all −1 ≤ n ≤ m. Similarly, X̃ is m-acyclic

at infinity if any n-cycle whose support is outside of D is the boundary
of an (n + 1)-chain with support outside of C for all −1 ≤ n ≤ m. In
particular, since (−1)-acyclic means “non-empty,” (−1)-acyclic at infinity
means “non-compact.” (See [12].)

We should note that the topology at infinity of a CAT(0) group is not
necessarily related to the topology of any of its visual boundaries. For ex-
ample, Mike Mihalik has constructed a finite non-positvely curved complex
whose universal cover is 1-connected at infinity but the visual boundary is
not 1-connected [13].

The property of being 1-connected at infinity has many applications in
the study of manifolds, and being m-acyclic at infinity is important in the
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study of group cohomology. In particular, the properties of being m-acyclic
and m-connected at infinity are quasi-isometry invariants [5, 10].

3. The Proof

Our argument uses the function given by distance from a fixed base vertex

v ∈ X̃, which we denote by Dv : X̃ → [0,∞). Thus if x ∈ X̃ then Dv(x) =
d �

X
(v, x). In establishing Theorem 1.3 we use the standard “Morse Lemma”

as developed by Bestvina and others (see [1], [2] and [3]). In this setting a
Morse function is a map M from a cell complex to the closed half line [0,∞)
where the only critical points of M , i.e., those points where the topology of

M−1(r) can change, occur at vertices. In the case where X̃ is a CAT(0)
cubical complex, it is always true that the critical points of the function Dv

are vertices of X̃ (see [4]). In the general CAT(0) setting this isn’t the case;
the topology can change whenever one first encounters a cell, which may
be at a vertex or at some interior point of the cell. This is however only a
minor annoyance as we explain below.

The proof of the following lemma is a standard application of the fact
that Euclidean and hyperbolic simplices are convex and CAT(0) metrics
are convex.

Lemma 3.1. Let X̃ be a contractible CAT(0) simplicial complex, v a base

vertex of X̃ and σ ⊂ X̃ any simplex. Then there is a unique point σv ∈ σ
that is closer to v than any other point of σ.

Definition 3.2 (Morse subdivision). Let X be a finite, non-positively curved

simplicial complex, let X̃ be its universal cover, let v ∈ X̃(0) and define Dv as

above. The Morse subdivision of X̃ , denoted X̃m, is a geodesic subdivision
induced by adding vertices at the critical points of Dv. We note that for this
construction one doesn’t need to assume that the basepoint v is a vertex.

So let v be any point in X̃, and begin the subdivision on the 1-skeleton of

X̃. Add a vertex to any critical point of Dv that occurs in the interior of an
edge, and then give each such edge e a new simplicial structure by taking
the cone from the point on e closest to v to the original vertices. Note that
all the critical points of edges in this subdivision are vertices.

Assume that X̃(n−1) has been subdivided. Let σ be an n-simplex, and
let p be the point of σ that is closest to v. Cone from p to the previously
subdivided (n − 1)-skeleton of σ. (Since metric Euclidean and hyperbolic
simplices are convex, this can be done geometrically.)

Given any simplex σ in X̃m, the point closest to v in X̃m must be a vertex,

since σ sits inside a simplex σ′ in X̃ , and σ contains the point of σ′ that is
closest to v as a vertex.

One should note that X̃m is not in general a π1(X)-complex as the subdi-

vision is not π1(X)-equivariant. For example, if X̃ is the standard (3, 3, 3)-

tessellation of
� 2 by regular triangles, then X̃m is illustrated in Figure 1.
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Asymptotically the Morse subdivision of X̃ is the same tessellation of
� 2 ,

but with the addition of six rays based at v.

Figure 1. A Morse subdivision of the plane.

Lemma 3.3. Let X be a finite, non-positively curved simplical complex, let

X̃ be its universal cover, let v ∈ X̃(0) and define Dv as above. Then Dv is a

Morse function on X̃m.

We can now describe and use the standard Morse lemma.

Definition 3.4. Given a base vertex v and the induced Morse function
Dv : X̃ → [0,∞), the ascending link of a vertex w ∈ X̃m is the link of w

in the subcomplex of X̃m induced by vertices w′ with Dv(w
′) > Dv(w). In

[4] the ascending link of a vertex is referred to as the “opposite part” of its
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link. It has also been colloquially referred to as the “dark side of the moon”
where the base vertex is thought or as the “sun”.

Lemma 3.5 (Morse Lemma). Let X̃ be a locally finite contractible CAT(0)
complex, let Dv be the Morse function defined using a fixed base vertex v,

and let X̃m be the Morse subdivision of X̃. If the ascending link of each

vertex w ∈ X̃m is n-acyclic, then X̃ is n-acyclic at infinity.

Theorem 1.3 follows immediately from Lemma 3.5 and the following lem-
mas.

Lemma 3.6. Given any vertex w ∈ X̃m, Lk↑(w) is a deformation retract of

PLk(w, p) where p is the point in Lk(w) corresponding to the geodesic [v, w].

Proof. For sufficiently small ε > 0 one can embed the link of w in X̃m as the
metric sphere of radius ε based at w. Let the puncture point — where the
geodesic [v, w] intersects the embedded link — be denoted p. Then it follows
from the Side-Angle-Side definition of CAT(0) (part (5) of Proposition II.1.7
in [6]) that a point w′ in the link of w is further from v than w if and only
if the spherical distance from the puncture point p to w ′ is at least π/2.

Lemma 3.7. Let X be a finite, non-positively curved complex. If for each

cell σ ⊂ X, and each point p ∈ Lk(σ), one has PLk(σ, p) is (n−|σ|)-acyclic,

then for each vertex w ∈ X̃m, the ascending link of w, Lk↑(w), is n-acyclic.

Proof. As was mentioned in Section 2, the space of directions at any point

p ∈ X̃ is the spherical join of the unit tangent bundle at p in the simplex
σ supporting p, with the spherical link of σ. Since the link of any simplex

σ ⊂ X̃ is presumed (n − |σ|)-acyclic, it follows that the space of directions

at any point p ∈ X̃ is n-acyclic. In particular, the full link of any vertex

w ∈ X̃m is n-acyclic.

If w is a vertex in X̃m then its punctured link at any puncture point p
is the same as the punctured space of directions for the point w thought

of as a point in X̃. Should the puncture point p be orthogonal to the cell,

that is, p sits fully in the link of the simplex σ supporting w ∈ X̃ , then
the punctured space of directions is the spherical join of the unit tangent
bundle (= Sdim(σ)−1) with the punctured link of σ (which is (n−|σ|)-acyclic
by hypothesis). Should the puncture point p not be orthogonal to σ, then
the punctured space of directions is homotopy equivalent to a cone over
some subcomplex of the link of σ, hence it is actually contractible.

The reader who wishes to avoid Morse theory arguments can easily es-
tablish Theorem 1.3 using local pushing arguments as in [4].

4. Examples

Example 4.1. We learned of the following example from Ross Geoghegan
who attributes it to Mladen Bestvina.
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Duality properties frequently occur in Cohen-Macaulay complexes. Some
people have wondered if any finite K(π, 1) complex X, where the links of the
vertices in X are Cohen-Macaulay, then π1(X) is a duality group. (Theorem
C of [4] can be cited as giving evidence for such a guess.) However, the
following example shows that this reasonable guess is false. One takes X to
be two tori, cellated as indicated in Figure 2, joined along a common edge
e.

a a

b

b

c c

d

d

ee

Figure 2. Two cubical tori attached along the edge e

The links of all but the two vertices bounding the shared edge e are circles;
the links of the two vertices bounding the common edge are two-petal roses.
So all links in X are Cohen-Macaulay. But the fundamental group of X is

� 2 ∗
� 2 which is a two-dimensional group that is not one-ended, hence it’s

not a duality group.
The joined tori complex X admits a non-positively curved cubical metric,

and it’s instructive to reconsider this example in light of Theorem 1.1. Given
any finite, 2-dimensional non-positively curved cubical complex X, in order
to show that π1(X) is a duality group via this theorem, one would need to
know that the link of each vertex is 0-acyclic and that these links remain
0-acyclic when one removes any simplex from the link. In other words, the
links are connected graphs and these graphs contain no cut vertices or edges.
In the case of the joined tori, the link of a vertex bounding the shared edge
of X is a two-petal rose, which has a cut vertex. This example highlights
that the introduction of punctured links in Theorem 1.3 is necessary.

Example 4.2. On the other hand, one can’t hope for a full converse to
Theorem 1.3. Examples in [8] show that a space can be highly connected at
infinity without having highly connected punctured links. Those examples
are in the context of Coxeter group actions. Here we outline another example
that fits well with the presentation in this paper.

Consider the group G = 〈x, y, z | txyt−1y−1x〉, the fundamental group of
the non-orientable surface with Euler characteristic −1. The universal cover
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of the presentation 2-complex is the hyperbolic plane � — tessellated by
hexagons meeting six at a vertex — so G is obviously one-ended.

The presentation 2-complex of G is gotten by taking a hexagon and mak-
ing the edge identifications as indicated by the defining relation for G. One
can subdivide this hexagon into 6 quadrilaterals by coning the midpoints
of edges to baricenter of hexagon. Let

�
2 act on the hexagon by rotating

an interior, concentric hexagon through an angle of π, and let K be the
quotient complex. Equivalently, start with a Möbius band decomposed into
six rectangles so that the boundary is a cycle of length 6 and the equator
is a cycle of length 3. Attach a triangle to the equator to form a cell com-
plex homotopy equivalent to a disk (the homotopy equivalence is defined by
shrinking the triangle to a point). Label the six edges edges on the boundary
of the original Möbius band as in the presentation for G, and make the cor-
responding edge identifications. By shrinking the interior triangle one sees
that this complex K is homotopy equivalent to the presentation 2-complex

for G, hence π1(K) = G and K̃ is homotopy equivalent to � . See Figure 3.
The complex K admits a non-positively curved piecewise Euclidean struc-

ture. The interior triangle is given the metric of an equilateral triangle, and
each rectangle is given the metric of a quadrilateral with angles 5π/6 along
the inner triangle and π/6 along the boundary of the Möbius band. To
establish the local non-positive curvature one simply has to make sure that
no links of vertices have short loops. Due to the edge identifications, the six
vertices along the boundary of the Möbius band are all identified, and the
link of this vertex is a cycle of combinatorial length 12, each edge having
length π/6. The links of the three vertices on the interior triangle are all
Θ-graphs, with the edge coming from the triangle having length π/3 and
the top and bottom arcs having lengths 5π/3 each.

While K̃ is one-ended, and even in fact has a single circle at infinity, the
punctured links of vertices on the interior triangle are not connected; just
puncture along the short arc in the θ-graph.

We note that there is nothing special about our choice of surface group in
this example; the same techniques apply to any (hyperbolic) surface group.

5. Semistability

As the examples in Section 4 have shown, a full converse to Theorem 1.3
is not possible. There is, however, an important partial converse which is
established in Corollary 5.3 below.

Definition 5.1. Let X̃ be a contractible, locally finite complex, and let
C0 ⊂ C1 ⊂ C2 ⊂ · · · be a nested, properly increasing sequence of compact

subcomplexes of X̃ that exhaust X̃. One may then look at the induced
sequences of homology groups

Hn(X̃ − C0)← Hn(X̃ − C1)← Hn(X̃ − C2)← · · · .
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Figure 3. The complex K

This system is Hn-semistable if for each n there is a value f(n) > n such

that the image of Hn(X̃ − Ck) → Hn(X̃ − Cn) is independent of k for any
k ≥ f(n).

The homotopy version of semistability is defined in a similar fashion,
looking at the induced sequence of homotopy groups

πn(X̃ − C0)← πn(X̃ − C1)← πn(X̃ − C2)← · · · .

When considering homotopy groups one needs to be careful with basepoints
and this can, in general, be a significant problem. In order to chose base-

points one uses a proper ray ρ : [0,∞) → X̃ such that ρ([i,∞)) ⊂ X̃ − Ci

for all i, and then uses ρ(i) as the basepoint for π1(X̃ − Ci). In general the
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resulting inverse limit of fundamental groups can depend on ones choice of
basepoint ray; it is unknown if this pathology can exist in the universal cover
of a finite K(π, 1). It is however known that if the sequence of fundamental
groups is semistable for any basepoint ray, then it is semistable for all of
them, and the inverse limit is independent of choice of base ray.

We let (X̃m)>r be the maximal subcomplex of X̃m − Br(v) where v is

the base vertex and Br(v) = {x ∈ X̃m | d(v, x) ≤ r}. Equivalently, (X̃m)>r

is the maximal subcomplex contained in D−1
v ((r,∞)). The Morse theory

argument of the previous section establishes that (X̃m)>r is n-acyclic when

the links and punctured links of vertices in X̃m are n-acyclic. The same
hypotheses also imply semistability.

Theorem 5.2. Let X be a finite, non-positively curved complex. If for each

cell σ ⊂ X, and each point p ∈ Lk(σ), one has Lk(σ) and PLk(σ, p) are

(n− |σ|)-acyclic, then X̃ is Hn+1-semistable at infinity.

Similarly, if for each cell σ ⊂ X, and each point p ∈ Lk(σ), one has Lk(σ)

and PLk(σ, p) are (n−|σ|)-connected, then X̃ is πn+1-semistable at infinity.

Notice in particular that when the links and punctured links are con-
nected, the complex is π1-semistable.

Proof. First consider the case when n = 0, in which case our hypotheses

imply that the ascending links of vertices in X̃m are connected, and hence

by Theorem 1.3, all the (X̃m)>r are connected. Let φ : S1 → (X̃m)>r

be a continuous map, which we may assume is cellular. After sufficient
subdivision we may further assume that S1 is a simplicial circle such that
φ is actually a combinatorial map, taking vertices to vertices and edges to
edges. Let w be a point in S1 such that Dv(φ(w)) is minimal. Since we are

in the Morse subdivision X̃m, and φ is a combinatorial map, w is a vertex.
Let u1 and u2 be the vertices in S1 that are adjacent to w.

The vertices φ(ui) correspond to vertices in Lk↑(w), and hence by hypoth-
esis there is an edge path in Lk↑(w) joining u1 to u2. We may then construct

a new function φ′ : S1 → (X̃m)>r such that φ′ = φ except on the interval
[u1, u2] where φ′ maps to a path in Lk↑(w). Repeated application of this

local pushing process shows that φ(S1) is homotopic to loops in (X̃m)>R for
any R > r, and hence the inverse system

π1((X̃m)>0)← π1((X̃m)>1)← π1((X̃m)>2)← · · ·

induced by the filtration v = B0(v) ⊂ B1(v) ⊂ B2(v) ⊂ · · · is semistable.
We now consider the homological claim, assuming that links and punc-

tured links of simplices are (n− |σ|)-acyclic. Let z be an (n + 1)-cycle with

supp(z) ⊂ (X̃m)>r. Let w be a point in supp(z) that minimizes the distance

to v; w is necessarily a vertex in X̃m. Since w is of minimum distance,
supp(z) ∩ Lk↑(w) is an n-cycle in Lk↑(w), and since Lk↑(w) is n-acyclic,
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there is an (n+1)-chain zw in Lk↑(w) whose boundary is supp(z)∩Lk↑(w).
Thus if we set

z′ = z − z|St(w) + zw

then z and z′ are homologous (n + 1)-cycles. Repeated application of such

local replacements show that z is homologous to (n + 1)-cycles in (X̃m)>R

for any R > r.
To establish the homotopy result, note that by the Hurewitz theorem it

suffices to establish that (X̃m)>r is 1-connected and n-acyclic.

This semistability result allows us to establish a partial converse to Theo-
rem 1.3. For example, let X be a finite non-positively curved complex where
the punctured links are all connected, but there is a vertex v whose full link

is not simply connected. Let v also denote a chosen lift of v to X̃m. Then the
filtration by closed metric balls v = B0(v) ⊂ B1(v) ⊂ B2(v) ⊂ · · · induces
an inverse system

π1((X̃m)>0)← π1((X̃m)>1)← π1((X̃m)>2)← · · ·

where the bonds are surjections. The deformation retraction along geodesics

shows that π1((X̃m)>0) ' π1(Lk(v)) 6= 1 and hence the inverse limit of this

system is non-trivial. Thus X̃m is not simply connected at infinity.

Corollary 5.3. Let X satisfy the conditions of Theorem 1.3, so that we

know X is n-acyclic at infinity. If there is a simplex σ ⊂ X such that

Hn+1−|σ|(Lk(σ)) 6= 0, then X̃ is not (n + 1)-acyclic at infinity.

Similarly, if the punctured links are all connected, but the link of any

vertex is not simply connected, then X̃ is not simply connected at infinity.

For example, if X is a compact, non-positively curved 3-dimensional pseu-
domanifold, which is not a manifold, then the fundamental of some vertex

link is non-trivial, so by Corollary 5.3, π∞
1 (X̃) is non-trivial.
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