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Abstract. When undergraduates ask me what geometric group
theorists study, I describe a theorem due to Gromov which relates
the groups with an intrinsic geometry like that of the hyperbolic
plane to those in which certain computations can be efficiently car-
ried out. In short, I describe the close but surprising connection
between negative curvature and efficient computation. This theo-
rem was one of the clearest early indications that applying a metric
perspective to traditional group theory problems might lead to new
and important insights.

The theorem I want to discuss asserts that there is a close rela-
tionship between two collections of groups: one collection is defined
geometrically and the other is defined computationally. The first sec-
tion describes the relevant geometric and topological ideas, the second
discusses the key algebraic and computational concepts, and the short
final section describes the relationship between them. An informal
style, similar to the one I use when answering this question face-to-
face, is maintained throughout.

1. Geometry and topology

The first thing to highlight is that there is a close relationship be-
tween groups and topological spaces. More specifically, to each con-
nected topological space X there is an associated group G called its
fundamental group and absolutely every group arises in this way (in
the sense that for each group G one can construct a topological space
X whose fundamental group is isomorphic to G). Because of this con-
nection and because spaces with isomorphic fundamental groups share
many key properties, we can use the topology of the space X to un-
derstand the algebraic structure of its fundamental group G.

Fundamental groups. In order to make this discussion as accessible
as possible, here is a quick sketch of the basic idea behind the notion
of a fundamental group. As an initial attempt, one could try to form
a group out of a space by using the paths in the space as our elements
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and the operation of concatenation as our multiplication, but there
are problems that arise. First, we want to be able to “multiply” (i.e.
concatenate) any two paths, but to do so we need the first path to end
where the second path begins. To fix this we select a point x in our
space and consider only those paths that start and end at x. The role
of an identity element is played by the trivial path that starts at x and
stays at x.

But now we come to the second problem. Concatenating paths only
makes them longer so that nontrivial paths do not yet have inverses.
It seems intuitive that traveling along a path in the opposite direction
should count as its inverse but in order to make this work, we need to
replace individual paths with equivalence classes of paths. We call two
paths equivalent when we can continuously deform one to the other
without moving its endpoints and the multiplication of equivalence
classes of paths is defined as the equivalence class of the concatenation
of representative paths. It is relatively easy to check that this multi-
plication is well-defined and that the resulting algebraic structure is a
group. Moreover, so long as the space X is path connected, the alge-
braic structure of this group does not depend on our choice of basepoint
up to isomorphism. In other words, the group G is a invariant of the
space X itself independent of our choice of basepoint.

The standard illustration of this procedure and in many ways the
most crucial one is the following: the fundamental group of the unit
circle is isomorphic to the integers. The nontrivial group elements come
from paths that wrap around the circle and, in fact, the equivalence
classes essentially collect together those paths that wrap around the
circle the same number of times in the same direction. A second ex-
ample, closely related to the first, is that the fundamental group of the
torus is Z⊕ Z.

Covering spaces. There is another connection between the space X
and its fundamental groupG. So long as the spaceX is sufficiently nice,
it can be completely unwrapped in the following sense. There is another
space called its universal cover with trivial fundmamental group and a
projection map back to X that is locally a homeomorphism. In the case
of the circle, its universal cover is an infinite spiral, continuing forever
in both directions. Topologically this space looks like the real line, it
is contractible and it is easy to believe that its fundamental group is
trivial. It is also easy to see that the natural projection from the spiral
to the circle is a local homeomorphism. The universal cover of the
torus is the euclidean plane and the projection map from the plane to
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the torus is the one that first wraps it up into an infinite cylinder in
one direction and then wraps it up in the other direction into a torus.

One useful fact is that the fundamental group of X acts on its uni-
versal cover by homeomorphisms. In our examples, the integers act on
the infinite spiral by rigidly shifting it up or down and the group Z⊕Z
acts on the plane by translating by vectors with integer coordinates.
In fact, the action of the fundamental group on the universal cover
is always transitive on the preimages of a point and these preimages
are in one-to-one correspondence with the elements of the fundamen-
tal group. From the early twentieth century to the present day group
theorists have used this relationship to study infinite discrete groups.
In particular, the topology of the universal cover on which the fun-
damental group G acts can be used to extract information about the
algebraic structure of G.

Gestures. This is probably as good as place as any to mention one
key aspect of my interactional style that is difficult to replicate in a
written text. Gestures are an important aspect of how I communicate
mathematics orally and this is especially true when I am talking to stu-
dents. In particular, throughout this entire discussion I usually employ
a collection of gestures in specific locations to focus attention and to
illustrate what is going on. The result is something like Stravinsky’s
orchestration that accompanies the story of Peter and the Wolf. Recur-
ring characters (mathematical concepts) have musical themes (stylized
gestures) that are repeated every time they reappear. Whenever I men-
tion the geometric and topological aspects of groups I gesture to my
lefthand side (and the algebraic and computational aspects involve ges-
tures to my righthand side). The space X is located on the lower left
and its universal cover is directly above it. The gesture associated to
X, its theme, is the miming of the shape of a torus. For its univer-
sal cover, I start with the torus on the lower left and then raise my
arms and spread out my hands to indicate the euclidean plane. The
action of G on the universal cover of X is indicated by moving both
hands (in euclidean plane position) in small syncronized circles with
the hands themselves always pointing in the same direction and main-
taining a rigid relationship between them. The reader should visualize
these gestures as they read along.

Metrics on groups. Returning to our discussion of the action of the
fundamental group on the universal cover, suppose we add a metric to
the original space X. In our example, rather than imagining a space
that is merely a topological torus, imagine a space with a precise metric
so that we can calculate distances, angles and areas. This local metric
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information induces a metric on the unwrapped version and we can
use this metric on the universal cover to turn the group G itself into
a metric space. I should also point out that the action of G on the
universal cover is one that preserves this local metric information. In
other words, it acts on the universal cover by isometries.

To turn G into a metric space we to pick a point x̃ in the universal
cover and then for each group element g ∈ G record the distance be-
tween this point and its image under g. We call this the distance from
the identity element to g. More generally, given two group elements
g and g′, we define the distance between them to be the distance in
the universal cover between the images of x̃ under g and g′. It is now
relatively easy to convince yourself that this distance function defines
a metric on the elements of G, i.e. that it is symmetric, nonzero on
distinct pairs of elements and satisfies the triangle inequality.

Intrinsic Metrics. The other thing that is obvious is that the precise
values of the metric on G very much depend on the specific metric
we added to our space X and the point x̃ that we selected. It turns
out, however, that when X satisfies certain minimal conditions (such as
being compact) altering the metric on X or choosing a different point x̃
does not significantly alter the induced metric on G. More specifically,
given two distinct metrics on X and two different selected points, the
metrics they induce on G are related by linear inequalities. In other
words, there exist constants so that for every pair of elements in G,
their distance in the first metric is bounded above by a linear function
of their distance in the second metric and vice versa. Two metrics that
are related in this way are said to be quasi-isometric and the notion of
quasi-isometry partitions all metrics into quasi-isometry classes. In this
language, the result I’m alluding to is that for any reasonable space X
with fundamental group G, the possible metrics on X induce metrics
on G that all belong to the same quasi-isometry class. In fact, this
remains true even if we replace our reasonable space X with any other
reasonable space Y with the same fundamental group G, a result known
as the Milnor-Svarc Theorem. This means that if G is the kind of group
that can be the fundamental group of a reasonable metric space X, then
the quasi-isometry class of the metric induced on G through its action
on the universal cover of X is completely independent of the space X
used to produce this metric. This is what geometric group theorists
mean when they say that (reasonable) groups come equipped with an
intrinsic metric that is well-defined up to quasi-isometry.

Differential geometry. We are now going to restrict our attention to
a special class of groups but the motivation for this restriction involves
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a short digression into the history of a different part of mathematics.
Differential geometry is an area that studies spaces called Riemannian
manifolds that are locally homeomorphic to n-dimensional euclidean
space and which come equipped with a nice smooth metric that al-
lows them to be investigated using the standard tools of multivariable
calculus. Early on, differential geometers defined various notions of
curvature and they proved that Riemannian manifolds that are nega-
tively curved, in a suitable sense, have very nice properties such as a
contractible universal cover. Initially their proofs used the full force of
the analytic tools available to them, but as they simplified the proofs
to extract the essential of why these results were true, they soon dis-
covered that they could assume much less about the original space and
still produce significant consequences. In fact, all that was really neces-
sary was that certain inequalities hold involving points on the sides of
geodesic triangles. Once reformulated in this way, their ideas could be
applied to a much larger class of metric spaces which did not necessar-
ily locally look like euclidean space and where the ordinary operations
of multivariable calculus could not be applied. One of these differential
geometers was Misha Gromov and he soon realized that these distilled
ideas from differential geometry could be applied to infinite discrete
groups.

Thin triangles. The key definition is inspired by the properties of
triangles in the hyperbolic plane. If you have ever studied the geome-
try of the hyperbolic plane, you have probably learned that there are
important differences between triangles in the hyperbolic plane and
triangles in the euclidean plane. In a euclidean triangle, the sum of its
three angles is π but in a hyperbolic triangle, the sum of its angles is
always strictly less than π. The more relevant fact about hyperbolic
triangles for our discussion is one that does not always make it into a
first course on hyperbolic geometry, namely, that all triangles in the
hyperbolic plane are uniformly thin.

In the euclidean plane, some triangles are fat. What I mean by this
is that for every constant r we can find a euclidean triangle and a
point in its interior so that the distance from this point to any point
on its boundary is at least r. Just pick the center of a large equilateral
triangle. In the hyperbolic plane you can do this for small values of r
but not for large values of r. Let me give an equivalent reformulation
of this property where I actually know the exact value of the constant
where the behavior changes. In the euclidean plane for any constant r
it is easy to find a triangle and a point p on one of its sides so that the
distance from p to any point on either of the other two sides is at least
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r. In the hyperbolic plane it turns out that given any triangle and any
point p on one of its sides, there is a point q on one of its other sides so
that the distance from p to q is less than log(1 +

√
2). This exact value

is relatively easy to establish but the interesting point is that such a
value even exists.

Hyperbolicity. Gromov turned the uniform thinness of triangles in
the hyperbolic plane into a defining characteristic of hyperbolic spaces
and hyperbolic groups. A space is called δ-hyperbolic when all geodesic
triangles in this space are δ-thin for a fixed constant δ. In other words,
given any three points and any three length-minimizing paths connect-
ing them into a triangle and given any point p on one of these paths,
there is a point q on one of the other two paths so that the distance
from p to q is less than δ. A group G is called word hyperbolic or Gro-
mov hyperbolic when it is the fundamental group of a reasonable metric
space X whose universal cover is δ-hyperbolic for some constant δ. It
turns out that being Gromov hyperbolic really is an intrinsic property
of G in the sense that it is independent of our choice of X and of our
choice of a metric on X. Concretely, if X and Y are reasonable spaces
with fundamental group G and one of them has a δ-hyperbolic univer-
sal cover then the other universal cover is δ′-hyperbolic for a possibly
different constant δ′. In short, groups that are hyperbolic in the sense
of Gromov are those where the geometry of its intrinsic metric shares
a key property possessed by triangles in the hyperbolic plane.

2. Algebra and computation

And now for something completely different. Set the geometric and
topological properties of groups aside for the moment and consider
their algebraic and computational properties. The first thing to note
is that the infinite groups which are the easiest to work with from
a computational perspective are those that have some sort of finite
description.

Descriptions of groups. The classical method of describing an infi-
nite group is to list a set of elements that are sufficient to generate the
entire group and then to list some relations satisfied by these elements
that are sufficient to generate all of the relations that hold in the group.
Such a presentation is said be finite when both the set of generators and
the set of relations are finite and the group it described is called finitely
presented. The classical example of a finite presentation is the group
generated by a and b and subject only to the relation that ab = ba.
This is a finite description of the group Z ⊕ Z. There are other ways
to characterize the class of finitely presented groups that make clear
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that this is an important and interesting class of groups to study. For
example, the class of finitely presented groups is exactly the same as
the class of groups that are fundamental groups of compact manifolds
and it is exactly the same as the class of groups that are fundamental
groups of finite simplicial complexes.

The word problem. It is traditional to use a language metaphor
when working with a finitely presented group. Individual generators
are called letters and finite products of generators and their inverses are
called words. One problem that immediately arises is that because the
generators satisfy relations, there are typically many different words
that represent the exact same element of the group. In the standard
presentation of the group Z ⊕ Z, for example, both aaabb and ababa
represent the same element even though they are distinct words. The
key question, first identified by Max Dehn in 1912, is the word problem:
For a fixed finite presentation, is there an algorithm that takes as input
two words written as products of the generators and outputs whether or
not they represent the same element of the group after a finite amount
of time. For Z⊕Z the answer is yes, there does exist such an algorithm.
One such algorithm goes as follows. Systematically move all the a’s and
a−1’s to the left and all the b’s and b−1’s to the right and then simplify
until the final result is a word of the form aibj for some integers i
and j. Two words that have the same normal form represent the same
group element and two words that have distinct normal forms represent
distinct group elements. This works for Z⊕Z but the general situation
is much more complicated.

Some problems cannot be solved. In the early twentieth century
mathematicians were beginning to learn that there is an important dis-
tinction between what is true and what can be proved. In the same way
that a statement such as “This is a lie” cannot consistently be assigned
a truth value, Gödel showed how one could construct, for any finite self-
consistent axiomatic system for the natural numbers, a sentence that
was true but which cannot be proved from the axioms. When trans-
lated into the language of the emerging theory of computation, this
means that there are problems that cannot be solved algorithmically
and one can prove that they cannot be solved algorithmically. One
example of such an unsolvable problem is the halting problem: Does
there exist a computer program which takes as input an arbitrary com-
puter program and outputs, after a finite amount of time, whether or
not the inputted program will run forever? The answer is that no such
generic program analyzing software can exist since there will always be
some program that it cannot successfully analyze.
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Once mathematicians realized that certain problems cannot be solved,
they used that fact to prove that other problems cannot be solved.
They did this by showing that a solution to the second problem leads
to a solution to the first problem, which contradicts the fact that we
know the first problem cannot be solved. Working along these lines,
Boone and Novikov, working independently, showed that a single al-
gorthm that solves the word problem in an arbitrary finitely presented
group cannot and does not exist. In fact, there are explicit finite pre-
sentations for which it is known that there is no algorithm to solve the
word problem for this specific group.

Efficient solutions. The fact that some finitely presented groups have
word problems that cannot be solved merely prompts mathematicians
to shift their attention to those groups with word problems that can
be solved. Going one step further, we can divide groups with solvable
word problems into classes based on how hard their word problems are
to solve. One indication of the level of difficulty is how long it takes
for the algorithm to work: how many units of time does it take as a
function of the total length of the two words under consideration? In
other words, let n denote this total length of the two words given as
input and describe the time bound as a function of n. Is it a linear
function of n? quadratic? polynomial? exponential?

Clearly the best possible algorithms cannot run in less than linear
time since in order to correctly answer whether or not two words rep-
resent the same element in the group, the program must, at the very
least, read the two words which takes a linear amount of time. In our
example of the standard presentation of Z ⊕ Z, the process described
that places words in normal form aibj can take a quadratic amount of
time since one of the initial inputs might be bmam. Each b must be
moved past each a which involves m2 local modifications. These can
be visualized in the plane as pushing across single squares from one
pair of sides of a large rectangle to the other pair of sides.

Isoperimetric inequalities. In fact, the best possible time bound for
a solution to the word problem in a particular finitely presented group
G is quite closely related to the isoperimetric inequality satisfied by
closed loops in the universal cover of any reasonable metric space X
with fundamental group G. By isoperimetric inequality we mean the
following. For each closed loop in a simply connected metric space, we
can measure the minimal area of a disc mapped isometrically into the
space so that its boundary is the specified closed loop. We measure
the ratio of this minimal area to the length of the curve and then
find the largest such ratio as the curves vary over all curves up to a
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specified length. As this bound grows we get an increasing function
that measures how hard it is to fill loops of a given bounded size. It
turns out that the rate of growth of this function is independent of
X and is an invariant of G alone. It is bounded above by a recursive
function iff the word problem for G can be solved and for our example of
Z⊕Z the growth rate of this function is always quadratic. The finitely
presented groups with an isoperimetric inequality that grows linearly
are the ones whose word problem can be solved in linear time. Thus
these are the groups with the fastest possible solution to their word
problem, the groups with the best possible computational properties.

3. Gromov’s theorem

And now for the surprising conclusion. In the 1980s Gromov proved
that the groups with the best possible computational properties cor-
respond exactly to those with an intrinsic geometry that is negatively
curved in the sense described earlier [Gro87].

Theorem 1. A finitely presented group has a linear time solution to
its word problem if and only if it is hyperbolic in the sense of Gromov.

This is an amazing result because the implication is not merely in
one direction; it is an exact correspondence. As a consequence of this
result, geometric group theorists tend to view hyperbolic geometry as
the best possible geometry for a group to have since it corresponds to
the group having the best possible computational properties. This is
the kind of result that makes researchers sit up and take notice, and
it prompted a thorough-going review of the foundations of the sub-
ject. It also immediately prompts a large number of follow-up ques-
tions. How strong is this bridge between geometry and topology on the
one hand and algebra and computation on the other? In particular,
what happens when we expand the class of groups under consideration?
Are there geometric consequences when a finitely presented group has
a quadratic, cubic or polynomial time solution to its word problem?
Are there computational consequences when a finitely presented group
has an intrinsic geometry that is non-positively curved in some sense
(rather than negatively curved)? Over the past 30 years these types of
questions have led to the development of several general theories such
as the theory of automatic and biautomatic groups [ECH+92] and the
theory of groups that act on nonpositively-curved spaces [BH99].

A second natural set of questions involves taking the various classes
of groups traditionally investigated by combinatorial group theorists
(such as outer automorphisms of free groups, mapping class groups of
closed surfaces, braid groups, Coxeter groups, Artin groups, one-relator
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groups, etc., etc.) and asking which of the various general theories of
curvature and computation apply in each case. To my mind, this single
theorem of Gromov is like the Big Bang and it played a major role in
the creation of a new subfield called geometric group theory.
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