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Résumé. — The braid groups have several well-known classifying spaces. There is a classical
classifying space derived from the complement of the complex braid arrangement, which, when
viewed as a complexification of the real braid arrangement, is closely related to the Salvetti com-
plex, the standard Artin presentation and the standard Garside structure of the braid group. The
dual presentation of the braid group, introduced by Birman, Ko and Lee in 1998, leads to a second
Garside structure and a second piecewise Euclidean classifying space that my co-authors and I call
the dual braid complex with the orthoscheme metric. Since both sequences of spaces are classi-
fying spaces for the same sequence of groups, they are homotopy equivalent. Recently, Michael
Dougherty and I have been able to made the connection between these two spaces much more
concrete using a natural embedding of the dual braid complex into the corresponding quotient of
the complex braid arrangement complement. This homotopy equivalent subspace is defined by
viewing the points in the classical classifying space as polynomials. In fact, this approach leads
to several new metric complexes, interesting combinatorics, and connections to other parts of the
mathematics. In particular, we add a natural piecewise Euclidean metric and a cell structure to
a compactification of the quotient of the classical classifying space. We call the result the criti-
cal value complex since the critical values of the polynomials labeling points are used to define
both the metric and the cell structure. With this metric on the quotient of the classical classifying
space, the embedding of the dual braid complex with the orthoscheme metric become an isometric
embedding.

Dedicated to Ruth Charney on her birthday

The primary goal of this article is to draw attention to an emerging connection between
two classifying spaces for the braid groups. On the one hand there is the classical classifying
space which is a quotient of the complement of the complex braid arrangement. When viewed
as a complexification of the real braid arrangement, this classifying space is closely related
to the Salvetti complex, the standard Artin presentation and the standard Garside structure
of the braid group [Art25, Art47, Gar69, Sal87, Dav08, DDD+15]. On the other hand,
there is the dual presentation of the braid group, first introduced by Birman, Ko and Lee in
1998, which leads to a second Garside structure and a second piecewise Euclidean classifying
space that my co-authors and I call the dual braid complex with the orthoscheme metric
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[BKL98, Bra01, Bes03, BM10, DMW20]. Since both sequences of spaces are classifying
spaces for the same sequence of groups, they are homotopy equivalent.

Recently, Michael Dougherty and I have been able to made the connection between these
two spaces much more concrete in a series of articles. This article, which is both a survey of
some results already available ([DM20, DMa]) and a research announcement of other results
in preparation ([DMb]), closely follows the talk that I gave during the “CharneyFest” con-
ference in Ohio. I have tried my best to preserve the many advantages of a live presentation,
preserving the hand-drawn figures from my slides, keeping the language intentionally infor-
mal, and sweeping most of the details under the proverbial rug. As mentioned above, one
goal is to try and make clear the results that Michael and I are proving and why they might
be of interest. My other main goal is to advertise how we are using polynomials to establish
the connection between these two sequences of spaces. I should also note that all of the new
results described in this article are joint work wtih Michael Dougherty.

Structure of the Article. — The article is divided into four sections. Section 1 reviews the
classical classifying space for the braid groups constructed as a quotient of the complex braid
arrangement complement. Section 2 reviews the piecewise Euclidean classifying space con-
structed from the dual Garside structure that my co-authors and I call the dual braid complex
with the orthoscheme metric. Section 3 describes the critical value complex and some of the
theorems that this perspective allows us to establish between these two types of classifying
spaces. And finally, Section 4 describes some of the ingredients that go into the proofs. In
particular, for each individual complex polynomial with distinct roots, we construct a locally
CAT(0) branched annulus with a metric rectangular tiling, and the way in which the structure
and metric of these branched annuli vary as the polynomial varies, determines the metric and
cell structure on the complex hyperplane complement.

1. The Braid Arrangement Complement

If V is a d-dimensional vector space with coordinates provided by a fixed ordered ba-
sis, then the symmetric group SYMd acts on V by permuting these coordinates. Although
this natural SYMd-action is not free, the points with non-trivial stabilizers form a union of
hyperplanes known as the braid arrangement.

Definition 1.1. — The set of points in V where all coordinates are distinct can be described
as the complement of a union of hyperplanes where some pair of coordinates are equal.
Concretely, let Hij = {z ∈ V ∣ zi = zj} be the hyperplane where the i-th and j-th coordinates
are equal, and let

H = ⋃
i,j∈[d]

Hij

be the union of these (
d
2
) hyperplanes. The subsetH is the braid arrangement and SYMd acts

freely on its complement, V −H.

For vector spaces over R or C, the only cases of interest here, V can be identified with Rd

or Cd. The symmetric group also acts on a lower dimensional space obtained by quotienting
out the 1-dimensional subspace fixed by all of SYMd.
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FIGURE 1. The 3-element symmetric group acts on R3 fixing the line R1 where
all coordinates are equal. The action descends to the quotient space R3

/R1 ≅ R2.

Remark 1.2. — If 1 denotes the vector with all coordinates equal to 1, then the line R1,
respectively C1, is the 1-dimensional subspace where all coordinates are equal. This line is
fixed pointwise under any permutation of coordinates and the SYMd-action descends to the
quotient vector space Rd/R1, respectively Cd/C1. Since all the hyperplanes in the braid
arrangement H also contain this line, it also descends to the quotient. Figure 1 shows the
SYM3-action on R3/R1, along with the three lines in the braid arrangement quotient.

Remark 1.3. — The main space of interest is Y = SYMd/(Cd −H)/C1. This is the lower
dimensional version of the complex braid arrangement complement, where we also quotient
by the free symmetric group action. In the natural metric coming from C, this is a locally
Euclidean, (2d− 2)-dimensional open manifold without boundary, which is not compact and
not complete. Michael Dougherty and I introduce an alternative, bounded metric on this
space, defined using polynomials, so that its compact metric completion can be given the
structure of a finite piecewise Eucldean, polyhedral cell complex. See Sections 3 and 4.

The connection between this space and the braid group can be seen via the standard con-
figuration space trick. A single point in Cd can be viewed as d labeled points in C, and a loop
in Cd can be viewed as an d-strand pure braid. Similarly, a single point in Rd can be viewed
as d labeled points in R. See Figure 2.

Remark 1.4. — Using the configuration space trick, it is easy to see that π1(Cd − H) =

PBRAIDd and π1(SYMd/(Cd −H)/C1) = BRAIDd. In particular, the removal of the braid
arrangement H means labeled points in C are distinct, the quotient by SYMd means labeled
points become unlabeled, and the quotient by fixed line C1 simply means that point config-
urations are only considered up to rigidity translation. Tracing out the point configurations
over time produces the (pure) braids. It has long been known that these spaces are classifying
spaces for the pure braid groups and the braid groups [BS72, Del72].

Remark 1.5. — When working over the reals, the complement Rd −H is disconnected with
d! connected components, freely permuted by SYMd, and the quotient space SYMd/(Rd−H)

is contractible. The cell structure dual to the real braid arrangement is a Euclidean polytope
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FIGURE 2. A single point in Cd can be viewed as d labeled points in C, and a loop
in Cd can be viewed as a pure braid. Similarly, a single point in Rd can be viewed
as d labeled points in R.

FIGURE 3. The cell structure dual to the real braid arrangement is a permutaher-
don, also known as the Davis complex for symmetric group. A modified version
with orientations is the Salvetti complex for the braid group.

known as a permutahedron, and this is also the Davis complex for the symmetric group
(with a slightly different cell structure). There is a modified version of this complex with
orientations, the pure Salvetti complex, which is homotopy equivalent to the complex braid
arrangement complement. Each polytopal face is replaced by one or more oriented faces,
one for each vertex in the face. As shown in Figure 3, the six vertices, six edges and single
hexagon that form the Davis complex are replaced by six vertices, twelve oriented edges and
six oriented hexagons in the oriented Davis complex. The SYM3-action on this new complex
is free and the quotient has one vertex, two edges and one hexagon, giving the presentation
2-complex for the standard presentation of the 3-strand braid group: ⟨a, b ∣ aba = bab⟩. See
[Par14, McC17] for details.

The version with the reals restricted to a closed interval is also of interest, since it illustrates
one way in which orthoschemes arise in nature.
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v0 v1

v2

v3

FIGURE 4. The interior of the standard 3-orthoscheme shown on the left can be
described as the set of 3 distinct unlabeled points in the open interval (0,1).

Remark 1.6. — If I = [0,1] ⊂ R, then Id is an d-dimensional cube, and the quotient by
the (non-free) SYMd-action is a metric shape SYMd/Id that Tom Brady and I call a standard
unit d-orthoscheme [BM10]. See Figure 4. If the labeled points are the interior of I and the
single point in Id avoids the real braid arrangement, the quotient space is the interior of the
orthoscheme.

2. The Dual Braid Complex

The standard presentation of the braid group has a base configuration where the points
are in a line along the real axis. The dual presentation, first defined by Birman, Ko and
Lee in 1998, instead arranges the points at the d-th roots of unity around the unit circle, or
equivalently, as the vertices of a convex polygon [BKL98]. This leads to a dual presentation
and a dual Garside structure [Bra01, Bes03]. The dual simple generators are indexed by
noncrossing partitions.

Definition 2.1. — A partition of the vertices of a convex d-gon is a noncrossing partition
if the convex hulls of the blocks are pairwise disjoint. The set of all noncrossing partitions,
ordered by refinement, forms a lattice called NCd. This was first introduced by Kreweras and
this lattice is closely connected to the dual presentation of the braid group [Kre72, McC06].
The Hasse diagram of NC3 is shown on the lefthand side of Figure 5.

Definition 2.2. — Noncrossing partitions lead to dual simple braids (where the points move
counter-clockwise around the convex hulls of the block of the partition), and the dual simple
braids are part of the dual Garside structure. The Garside element is the d-cycle which rotates
the vertices of the d-gon, and the atoms are the set of (d

2
) half-twists.

Remark 2.3. — Given a Garside structure, there is a standard construction of a classifying
space [CMW04]. Its universal cover is a simplicial complex whose 1-skeleton is the Cayley
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FIGURE 5. The noncrossing partition lattice and its geometric realization with the
orthoscheme metric.

graph of the Garside group with respect to the simple generators. The classifying space
itself is the one-vertex quotient of this universal cover by the simplicial group action. Note
that the quotient is a ∆-complex, in the sense of Hatcher, rather than a (oriented) simplicial
complex [Hat02, DMW20]. The standard construction applied to the dual Garside structure
for the braid groups is the dual braid complex, and the geometric realization of NCd is a
strong fundamental domain from the BRAIDd-action on the universal cover of the dual braid
complex. In [BM10], Tom Brady and I add a piecewise Euclidean metric to this complex by
turning each simplex into an orthoscheme.

Remark 2.4. — Also in [BM10], Tom and I conjecture that the dual braid complex with the
orthoscheme metric is always locally CAT(0) and this has been shown when the number of
strands is very small [BM10, HKS16]. The present work is part of a new approach to proving
this theorem for all of the braid groups, by placing the dual braid complex inside the higher
dimension critical value complex.

And finally, here is an illustration of how this works in an easy-to-visualize low-
dimensional example.

Example 2.5. — The dual presentation is for the braid group on 3-strands is:

BRAID3 = ⟨a, b, c, d ∣ ab = bc = ca = d⟩

The universal cover of the dual braid complex is a metric trivalent tree cross R and the
orthoscheme realization of the NC3 poset is a strong fundamental domain for the vertex-
transitive BRAID3-action. The one-vertex quotient is the presentation 2-complex for the
dual presentation. The noncrossing partition lattice and its geometric realization with the
orthoscheme metric are shown in Figure 5. A portion of the corresponding universal cover is
shown in Figure 6 and a copy of the orthoscheme realization of NC3 has been outlined.
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FIGURE 6. A portion of the (universal cover of the) dual braid complex with d = 3.
Metrically, it is a trivalent tree cross R and the orthoscheme realization of the NC3

poset is a strong fundamental domain for the vertex-transitive BRAID3-action.

3. The Critical Value Complex

Since the two sequences of spaces described in Sections 1 and 2 are classifying spaces for
the same sequence of groups, we know abstractly that they are homotopy equivalent. It has
been difficult, however, to find a natural way to make this connection more concrete. Over the
years, I tried, with various collaborators, to define an embedding of the dual braid complex
into the symmetric quotient of the complex hyperplane complement so that it is at least linear
on each simplex, even if it does not preserve the edge lengths and the orthoscheme metric.
This can be done for d = 3, but our attempts would always fail for d > 3.

Then, in 2017, I gave a talk at Patrick Dehornoy’s retirement conference in Caen where I
mentioned this problem in passing. On the train ride back to Paris, Daan Krammer explained
to me an approach that (1) gives a natural way to embed the dual braid complex into the clas-
sical classifying space, and (2) explains the origin of the orthoscheme metric in this context.
The solution is to view points in the classical classifying space as polynomials(!) and then
to take these polynomials seriously. The conversion to polynomials is straight-forward and
classical.

Definition 3.1. — The quotient of the complex hyperplane complement Y = SYMd/(Cd −

H)/C1 can be identified with the space of monic degree d complex polynomials with distinct
(unlabeled) roots up to (precomposition by) translation. Concretely, a point in Y is realized
as d unlabeled points in C and then these are turned into the roots of the polynomial.

Once the points in Y are thought of as polynomial maps from C to C, one can consider
their critical points and critical values. In this language, here is the theorem which Krammer
roughly stated in 2017 and which Michael and I are proving.
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Theorem 3.2. — Let Y be the space of monic complex polynomials of degree d with distinct
unlabeled roots up to precomposition with translations. The subspace of polynomials where
all of its critical values lie on the unit circle is homeomorphic to the dual braid complex.
Moreover, there is a natural metric on this subspace defined by how the critical values move
around the unit circle as the polynomial varies, and this defines the orthoscheme metric.

Actually, what Michael and I are proving is somewhat stronger [DMb]. We define a
bounded metric on all of Y , not just the subspace of polynomials with critical values on the
unit circle, and turn the metric completion of Y into finite piecewise Euclidean cell complex.

Theorem 3.3. — There is a natural bounded metric on the open manifold Y so that its
metric completion, which we call X , is a compact space which supports a natural piecewise
Euclidean cell structure.

The cell complex X described in Theorem 3.3 is what we call the critical value complex.

Remark 3.4. — In [DMb] we also prove that the dual braid complex isometrically embeds
into the critical value complex and there is a deformation retraction from the critical value
complex onto the image of the dual braid complex. The proof uses a technical result that we
proved in [DM20]. In [TBY+20], William Thurston and his co-authors also prove a version
of this retraction, but in a completely different language and without realizing that the space
to which it deformation retracts is the dual braid complex. They refer to this space as the
“space of principal d-majors”.

Here is another typical result that our methods allow us to prove.

Theorem 3.5. — The subspace of polynomials where all critical values lie in a fixed closed
subinterval of the positive real axis is contractible, and as a metric object it is the or-
thoscheme realization of the noncrossing partition lattice NCd.

In other words, there is an orthoscheme realization of NCd coming from polynomials all
of whose critical values lie on a ray out of the origin, and there is a second orthoscheme
realization of NCd (with face identifications forming the dual braid complex) coming from
polynomials all of whose critical values lie on the unit circle. The full critical value complex
is a subdirect product of these two piecewise Euclidean cell complex and the result is a
manifold with boundary.

I would like to highlight the concrete and explicit nature of the cell structure in the critcial
value complex. In the critical value complex there are dd−2 ⋅n! top-dimensional cells indexed
by a maximal chain in NCd and a permutation in SYMn, where n = d − 1. Each such cell
is the direct product of two n-dimensional orthoschemes. Here is a rough description of the
critical value complex for d = 2, 3 and 4.

Example 3.6. — When d = 2, the cell structure on X is an annulus built out of 20 ⋅ 1! = 1
rectangle (a 2-polytope) by gluing a pair of opposite sides. When d = 3, the cell structure
on X is the union of 31 ⋅ 2! = 6 4-polytopes, each of which is a right-angled triangle cross a
right-angled triangle (i.e. the product of two 2-orthoschemes). When d = 4, the cell structure
on X is the union of 42 ⋅ 3! = 96 6-polytopes, each of which is a direct product of two
3-orthoschemes.
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p

FIGURE 7. The roots, critical points and critcal values of our standard example.
The lefthand side shows the five roots in white and the four critical points in red.
The righthand side shows the four critical values in red and the origin in white.

The critical value complex is a new metric classifying space for the braid group and its
geometric structure has not previously been studied. One conjecture that Michael and I have
not yet been able to prove, but which we firmly believe, is that the critical value complex is
exactly as non-positively curved as the dual braid complex inside it.

Conjecture 3.7. — The critical value complex is CAT(0) for a particular value of d iff the
dual braid complex is CAT(0) for that value of d.

4. The Polynomial Viewpoint

In order to explain how the polynomial viewpoint leads to the theorems listed in Section 3,
it is useful to look at the structure of a single polynomial map p from C to C. In [DMa],
Michael and I construct a genus 0 surface with a CAT(0) rectangular tiling for each complex
polynomial with distinct roots. Note that most of this section focuses on a single polynomial,
which merely represents a point in the complex hyperplane complement. A few remarks at
the end of the section describe how these local structures lead to a metric and a cell structure
as the polynomial varies.

Definition 4.1. — Let p(z) be a degree-d complex polynomial viewed as a map from C to
C. There are three (multi)sets of points associated with p, namely its roots, critical points and
critical values. The roots of p are the preimage of 0, the critical points are the roots of p′ and
the critical values are the images of the critical points. Note that the roots and critical points
are in the domain, while the critical values are in the range.

Throughout this section we use the following standard example.

Example 4.2. — Consider the polynomial p(z) = 3z5 − 15z4 + 20z3 − 30z2 + 45z with
derivative p′(z) = 15(z2 + 1)(z − 1)(z − 3). The roots, critical points and critical values of
p are shown in Figure 7. The lefthand side shows the five roots in white and the four critical
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FIGURE 8. A tiled diagram for our standard example produced by Steve Trettel
using Mathematica. The roots are located where all the colored lines converge and
the critical points are located in the regions that are not twisted topological
rectangles.

points in red. The righthand side shows the four critical values in red and the origin in white.
Note that slightly different scales have been used in the domain and range.

Recall that the location of the critical values determines whether the roots are distinct.

Lemma 4.3. — For a complex polynomial p(z), the following are equivalent: (1) p has no
repeated roots, (2) the roots and critical points are disjoint sets, and (3) the critical values of
p are all nonzero.

Next, recall how tiled diagrams can be used to encode and display functions from C to C.

Remark 4.4. — The idea behind a tiled diagram is to color and shade the points in the range
based on the argument and magnitude of their image. In particular, the points in the range are
assigned colors based on their argument and a shade based on their magnitude. The points in
the domain are then colored and shaded so that the map p is color and shade preserving. If
only certain arguments and magnitudes are drawn, the result looks like a twisted rectangular
tiling with a few exceptional 2-cells. Figure 8 shows a tiled diagram for our standard example
polynomial as produced by Mathematica.

When p has distinct roots, all of the crucial information about critical points and critical
values is contained in the restricted map p0∶Crts → C0, with the roots removed from the
domain and the origin removed from the range.

Definition 4.5. — We assign a bounded metric to the once punctured plane C0, by first map-
ping it to the twice punctured sphere via stereographic projection, and then radially projecting
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FIGURE 9. The three spaces described in Remark 4.5.

a b c

d

e

p

FIGURE 10. The branched annulus for our standard example, with its metric rect-
angular tiling.

it to the open annulus cylinder T × Iint. See Figure 9 where the plane, sphere and vertical an-
nulus are shown in green, red and blue, respectively. Note that rays and circles in the plane
C0, defined by constant argument or constant magnitude, correspond to longitudes and lati-
tudes in the sphere S2 and to horizontal circles and vertical lines in the vertical annulus T× I.
In [DMa] we extend the longitude and latitude language to all three spaces.

Definition 4.6. — Once we impose the bounded annulus metric to the range of p0, there is
a unique pullback metric on the domain which makes this map a local isometry everywhere
except at the isolated critical points around which it is branched. Moreover, so long as p has
more than one root, there is at least one critical point and at least one nonzero critical value,
and these can be used to give a metric rectangular structure to the (closure of the) vertical
annulus. This metric cell structure also pulls back through p to define a nonpositively curved
metric rectangular tiling of a genus 0 surface that we associate to the polynomial p. We call
this the branched annulus of p. A planar drawing of the branch annulus of our standard
example is shown in Figure 10. Keep in mind, however, that every twisted rectangle shown
is, in fact, a metric Euclidean rectangle with a metric determined by the corresponding metric
rectangle in metric rectangular tiling of the vertical annulus.
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FIGURE 11. The regular and critical latitudes in our standard example deter-
mines the following chain in the partition lattice: {a, b, c, d, e} ⊂ {ab, c, d, e} ⊂
{abde, c} ⊂ {abcde}.

a b c

d

e

p

FIGURE 12. The preimage of all of the critical longitudes for our standard example.
This structure can be encoded in a factorization of a d-cycle.

The preimages of the longitudes and latitudes in annulus carry detailed information about
the structure of the branched annulus and this can be encoded in various combinatorial ob-
jects.

Definition 4.7. — A horizontal circle in the vertical annulus is a critical latitude if it contains
a critical point of p, and it is regular otherwise. The preimages of regular latitudes are unions
of circles, whereas the preimages of critical latitudes have some singular component with a
structure called a metric cactus. As one transitions from the bottom of the annulus to the top,
the preimages go from the d distinct root circles at the bottom to one big circle at the top. The
order in which these root circles join up can be encoded in a chain inside the partition lattice
on the roots. Our standard example determines the following chain in the partition lattice:
{a, b, c, d, e} ⊂ {ab, c, d, e} ⊂ {abde, c} ⊂ {abcde}. See Figure 11.
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FIGURE 13. An example of a multipedal pair of pants with 3 legs. It has only
one critical point and one critical value. Its unique metric cactus and unique metric
banyan are shown at the bottom of the figure.

Definition 4.8. — A vertical line in the vertical annulus is a critial longitude if it contains
a critical point of p, and it is regular otherwise. The preimages of regular longitudes are
unions of d noncrossing lines connecting d root circles to the single boundary circle, whereas
the preimages of critical longitudes have some singular component with a structure called a
metric banyan. The structure of the preimages of the critical and regular longitudes can be
encoded in a factorization of a d-cycle. See [DMa] for details.

Remark 4.9. — There is another, more vivid, 3-dimensional way to view the structure of the
branched annulus. See Figure 13. Here the points have been arranged so that their heights
correspond to the height of their image in the vertical annulus. The result is a multipedal pair
of pants with as many “legs” as there are roots. The figure show the multipedal pants for the
cubic polynomial p(z) = z3 − 1. A similar diagram for our standard example would have 5
“legs” which join up at various heights.

Our detailed structural results about branched annuli with their metric cacti and metric
banyans can be found in [DMa]. And finally, a brief description indicating how these struc-
tures associated with individual polynomials, lead to a metric and a cell structure on a space
constructed from the quotient of the complex hyperplane complement.

Remark 4.10. — The branched annulus of a polynomial p is constructed by pulling back
a metric and a cell structure from the subdivided annulus in the range to form a branched
annulus out of the domain. For the space Y = SYMd/(Cd −H)/C1 we do something very
similar. There is a natural map from Y to SYMn/An, the space of multisets of n = d − 1
points in the vertical annulus. The map sends (the equivalence class of) the polynomial p
to its multiset of critical values in A. The quotient by C1 in the domain has been included
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precisely because precomposition with a transition changes the locations of the critical points,
but it leaves the locations of the critical values unchanged. Moreover, a quick dimension
count shows that Y and SYMn/An have the same dimension. In fact, the natural metric on
SYMn/An determines a pullback metric on Y which makes the map a local isometry on a
dense subspace. In addition, there is a natural cell structure on SYMn/An. First, view A
as an annulus formed by gluing a pair of opposite sides of a 2 by 2π rectangle. The space
An can then be viewed as the product of an n-dimensional cube of side length 2 and an
n-dimensional cube of side length 2π with some face identifications. The action of SYMn

on this space (which unlabels the points in A) is the diagonal action the product of these
two n-cubes. We subdivide each n-cube into n! orthoschemes, making An a space built out
of (n!)2 polytopes, each isometric to product of a standard n-orthoscheme of side length
2 and a standard n-orthoscheme of side length 2π. The quotient has n! of these polytopes
glued together according to the Hasse diagram of the weak Bruhat order on SYMn. This cell
structure also pulls back and induces a finite cell structure on (the metric completion of) Y .
The results in [DM20] are the key technical tools that we use to make this precise.
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