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Abstract. This article introduces a finite piecewise Euclidean cell complex

homeomorphic to the space of monic centered complex polynomials of degree
d whose critical values lie in a fixed closed rectangular region. We call this the

branched rectangle complex since its points are indexed by marked d-sheeted

planar branched covers of the fixed rectangle. The vertices of the cell structure
are indexed by the combinatorial “basketballs” studied by Martin, Savitt and

Singer. Structurally, the branched rectangle complex is a full subcomplex of a

direct product of two copies of the order complex of the noncrossing partition
lattice. Topologically, it is homeomorphic to the closed 2n-dimensional ball

where n = d − 1. Metrically, the simplices in each factor are orthoschemes.

It can also be viewed as a compactification of the space of all monic centered
complex polynomials of degree d.

We also introduce a finite piecewise Euclidean cell complex homeomorphic
to the space of monic centered complex polynomials of degree d whose critical

values lie in a fixed closed annular region. We call this the branched annulus

complex since its points are indexed by marked d-sheeted planar branched
covers of the fixed annulus. It can be constructed from the branched rectangle

complex as a cellular quotient by isometric face identifications. And it can

be viewed as a compactification of the space of all monic centered complex
polynomials of degree d with distinct roots.

Finally, the branched annulus complex deformation retracts to the branched

circle complex, which we identify with the dual braid complex. The space of
polynomials with distinct roots is one of the earliest classifying spaces for the

d-strand braid group, and the dual braid complex is a more recent classifying

space derived from the braid group’s dual Garside structure. Our explicit
embedding of one classifying space as a spine of the other provides a direct

proof that the two classifying spaces are homotopy equivalent.

Introduction

Let Polymc
d be the space of monic centered complex polynomials of degree d and

let Polymc
d (U) be the subspace of polynomials whose critical values lie in U ⊂ C.

In this article we describe a finite piecewise Euclidean cell structure on Polymc
d (U)

in four cases: when U is a closed interval , a circle , a closed rectangle , or a
closed annulus . Spaces homeomorphic to the first two have already appeared in
the literature under different names. The last two are being introduced here.

The overall flavor of our results is best illustrated by a concrete example. Con-
sider the case where d = 3 and U = is the real interval [−2, 2] ⊂ C. The
space Polymc

3 ( ), of monic centered cubic polynomials with critical values in the
interval [−2, 2], includes the polynomial p(z) = z3 + b for any b ∈ [−2, 2], since
it has a double critical point at 0 and a double critical value at b, as well as the
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Figure 1. The right-angled triangle shown on the right is the
spaceMult2( ) of 2 unlabeled points in the closed interval [−2, 2].
The three right-angled triangles with a common hypotenuse shown
on the left form the space Polymc

3 ( ) of monic centered cubic
polynomials with critical values in [−2, 2]. The extremal situations
have been labeled in both cases.

(rescaled) Chebyshev polynomial p(z) = z3−3z with critical points ±1 and critical
values ±2. More generally, it is straightforward to compute that the exact set of
polynomials satisfying these conditions are those of the form p(z) = z3−3a2ωkz+b

with a ∈ [0, 1], b ∈ [2a3 − 2, 2− 2a3], k ∈ {0, 1, 2}, and where ω = 1+i
√
3

2 is a cube
root of unity. Note that when a = 0, the value of k is irrelevant. Topologically, the
space is three triangles with a common hypotenuse, depicted in the left hand side
of Figure 1. The metric is provided by the space of possible critical values. Two
distinguishable critical values in [−2, 2] are represented by a point in the square
[−2, 2]2, and removing our ability to distinguish them corresponds to folding the
square along the diagonal line where they are equal to produce the spaceMult2( )
of 2-element multisets in [−2, 2]. The right-angled triangle Mult2( ), shown on
the right hand side of Figure 1, is also known as a 2-dimensional orthoscheme. The
generically 3-to-1 map from Polymc

3 ( ) on the left to Mult2( ) on the right is
a restriction of the Lyashko–Looijenga map that sends a monic centered complex
polynomial to (the monic polynomial determined by) its multiset of critical values.

More generally, Multd( ) can be viewed as a metric simplex known as a
standard d-dimensional orthoscheme, and we can pull back through the Lyashko–
Looijenga map to obtain a simplicial structure for Polymt

d ( ), the space of monic
degree-d polynomials up to precomposition with a translation1 with critical val-
ues in . When the metric from the orthoscheme is pulled back through the
Lyashko–Looijenga map, Polymt

d ( ) is assigned a stratified Euclidean metric (Def-
inition 7.18) distinct from the usual Euclidean metric inherited from Cd−1 when
the coefficients of the monic centered polynomial are used as coordinates. For

1Considering polynomials up to precomposition with a translation is equivalent to centering
the roots at the origin. The latter is preferable for concrete examples, but we will use the former

for the statements of theorems. See Remark 7.6.
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higher values of d, the combinatorial structure can be described using the lattice of
noncrossing partitions NCPartd and its order complex |NCPartd|∆.

Theorem A (Intervals: Theorem 12.5). The space Polymt
d ( ) of polynomials with

critical values in a closed interval (with the stratified Euclidean metric) is isometric
to the order complex |NCPartd|∆ (with the orthoscheme metric).

The noncrossing partition latticeNCPartd, defined by Kreweras in 1972 [Kre72],

has Cd = 1
d+1

(
2d
d

)
elements and dd−2 maximal chains, where the numbers Cd are

the ubiquitous Catalan numbers [Sta15]. So by Theorem A, the simplicial com-
plex Polymt

d ( ) ∼= |NCPartd|∆ has Cd vertices and dd−2 top-dimensional sim-
plices. Alternatively, every polynomial in Polymt

d ( ) can be uniquely labeled by
a marked planar metric graph called a banyan or branched line (Example 3.19).
The complex Brm

d ( ) of all marked planar d-branched lines (Definition 12.6) is
the same as the order complex |NCPartd|∆, so one way to restate Theorem B is
that Polymt

d ( ) ∼= Brm
d ( ). See [BBG+19] and [McC06] for surveys of the various

ways in which noncrossing partitions arise.
Noncrossing partitions started appearing in geometric group theory around the

year 2000, starting with the work of Birman–Ko–Lee [BKL98] on a new “dual
presentation” for the symmetric group Symd and the braid group Braidd. Tom
Brady [Bra01] and David Bessis [Bes03] soon turned this presentation into a new
classifying space for the braid group. More specifically, the dual presentation uti-
lizes Biane’s correspondence between NCPartd and [1, δ], the set of permutations
which appear in minimal length factorizations of the d-cycle δ = (1 2 · · · d) into
transpositions [Bia97]. By an appropriate identification of cells in the order complex
of NCPartd, Brady defined a simplicial complex which is a classifying space for
Braidd [Bra01], and this space was later endowed with the “orthoscheme metric”
in work of Brady and the second author [BM10]. With the orthoscheme metric,
this classifying space is called the dual braid complex Kd, and it is an example of an
interval complex when the same construction is applied in more general settings.
It was conjectured in [BM10] that the dual braid complex Kd is locally CAT(0),
which would imply that Braidd is a CAT(0) group. This has been proven for
d ≤ 7 [BM10, HKS16, Jeo23] but remains open in general. Our second main theo-
rem provides a polynomial version of the dual braid complex Kd.

Theorem B (Circles: Theorem 13.3). The space Polymt
d ( ) of polynomials with

critical values in a circle is homeomorphic to a quotient of the complex Polymt
d ( )

by face identifications. As a metric ∆-complex, Polymt
d ( ) is the dual braid com-

plex Kd with the orthoscheme metric.

The quotient map transforming Polymt
d ( ) into Polymt

d ( ) identifies all of the
vertices and many of the lower-dimensional faces. The cell structure on Polymt

d ( )
remains (d−1)-dimensional with dd−2 top-dimensional simplices, but now with only
one vertex. Although it is no longer a simplicial complex, it is a ∆-complex in the
sense of Hatcher [Hat02]. As in the interval case, there is an alternative way to label
the points in Polymt

d ( ). Every polynomial in Polymt
d ( ) can be uniquely labeled

by a marked planar metric graph called a cactus or branched circle (Example 3.20).
The complex Brm

d ( ) of all marked planar d-branched circles (Definition 13.4)
is the same as the dual braid complex Kd, so one way to restate Theorem B is
Polymt

d ( ) ∼= Brm
d ( ).
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Banyans and cacti were initially described in the first article of this series [DM22],
although the approach we take here is both more general and more direct. Alge-
braically banyans and cacti can be viewed as encoding linear and circular fac-
torizations of δ, respectively. This perspective is discussed in [DM24], where we
introduce a continuous version of noncrossing partitions that is closely connected
to the work of W. Thurston and his collaborators on the space of complex polyno-
mials [TBY+22].

The cell structure we put on the polynomial space Polymt
d ( ) is more com-

plicated. A closed rectangle ⊂ C is a direct product × of two intervals
and, somewhat surprisingly, we show that Polymt

d ( ) embeds as a subspace of the
product Polymt

d ( )×Polymt
d ( ). This is our third main theorem.

Theorem C (Rectangles: Theorem 14.4). The space Polymt
d ( ) of polynomials

with critical values in a closed rectangle (with the stratified Euclidean metric) is
isometric to a subcomplex of |NCPermd|∆ × |NCPermd|∆ (with the orthoscheme
metric).

The cell structure on Polymt
d ( ) is bisimplicial in the sense that every cell is

a product of two simplices. The vertices are enumerated by the Fuss–Catalan

numbers C
(4)
d = 1

3d+1

(
4d
d

)
and labeled by the combinatorial “basketballs” (Defi-

nition 14.5) initially defined by Martin, Savitt and Singer in [MSS07]. There are
(d − 1)!dd−2 top-dimensional cells. The compatibility condition between the non-
crossing partitions in each factor arise from the fact that they need to be com-
binatorial aspects of a common marked planar d-branched cover of the rectangle
. The complex Brm

d ( ) is the same as Polymt
d ( ), but with points labeled by

geometric and combinatorial information associated to marked planar d-branched
rectangles (Definition 14.6) so one way to restate Theorem C is that Brm

d ( ) em-
beds in Brm

d ( )×Brm
d ( ). The compatibility condition on top-dimensional cells

can be restated algebraically. The linear factorization of δ into transpositions com-
ing from the first factor and the linear factorization of δ into transpositions coming
from the second factor are related by the Hurwitz action of a simple braid. The dd−2

maximal factorizations and (d−1)! simple braids parameterize the top-dimensional
cells. This fact is related to the noncrossing hypertrees results in [McC].

Finally, the transition from to and its impact on Polymt
d ( ) is very sim-

ilar to that from to and its impact on Polymt
d ( ). In particular, the side

identification in C that turns the rectangle into the annulus induces a face
identification on the corresponding polynomial cell complex.

Theorem D (Annuli: Theorem 15.1). The space Polymt
d ( ) of polynomials with

critical values in a closed annulus is homeomorphic to a quotient of the metric cell
complex Polymt

d ( ) by face identifications.

The vertices of the bisimplicial cell structure on Polymt
d ( ) are counted by the

Catalan numbers Cd, and there are (d−1)!dd−2 top-dimensional cells. The complex
we call Brm

d ( ) is the same as a the space Polymt
d ( ) but with points labeled by

geometric and combinatorial information associated to marked planar d-branched
annuli (Definition 15.4). A detailed exploration of the geometric combinatorics
of the compact piecewise Euclidean cell complexes described by these first four
theorems will appear later in this series.
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The metric cell structures described in the preceding theorems are also con-
nected to classical polynomial spaces via homeomorphisms, compactifications and
deformation retractions. Our three final main theorems describe these connections.

Theorem E (Homeomorphisms: Theorem 10.7). The complex plane C, the punc-
tured plane C0 and the real line R are homeomorphic to the open rectangle , the
open annulus and the open interval respectively, and these induce homeomor-
phisms of polynomial spaces Polymt

d (C) ∼= Polymt
d ( ), Polymt

d (C0) ∼= Polymt
d ( )

and Polymt
d (R) ∼= Polymt

d ( ).

Theorem F (Compactifications: Theorem 10.9). The three spaces Polymt
d ( ),

Polymt
d ( ) and Polymt

d ( ) are compactifications of Polymt
d ( ), Polymt

d ( ) and
Polymt

d ( ).

Combining Theorem E with Theorem F shows that Polymt
d ( ), Polymt

d ( ) and
Polymt

d ( ) can be viewed as compactifications of Polymt
d (C), Polymt

d (C0) and
Polymt

d (R), respectively. In particular, the complex Polymt
d ( ) is a manifold, or

more specifically a closed ball with corners. For comparison, the space Polymt
d ( )

is not a manifold, and neither is the product of two copies of Polymt
d ( ) which

contains Polymt
d ( ) as a subcomplex (Theorem C).

Finally, some of these polynomial spaces are deformation retracts of others.

Theorem G (Deformation retractions: Theorem 10.15). A deformation retrac-
tion of onto any embedded arc ⊂ induces a deformation retraction from
Polymt

d ( ) to Polymt
d ( ). Similarly, a deformation retraction of onto any core

curve ⊂ induces a deformation retraction from Polymt
d ( ) to Polymt

d ( ).

This shows that the space of monic degree-d polynomials with distinct roots up
to translation admits a compactification with a metric bisimplicial cell structure
such that (1) there is a deformation retraction of this space to the subspace of
polynomials with critical values on the unit circle, and (2) the induced cell structure
on the resulting space is isometric to the dual braid complex Kd.

Connections to the literature. Many of the objects and ideas in our main
theorems have appeared before in various forms, but we believe this is the first
article to combine all of them. Any list of connections to the rich literature on
these topics will be incomplete, but here are some of the previous appearances of the
main characters: combinatorial data associated to polynomials, compactifications,
cell structures, and the dual Garside structure for the braid group.

The preimages of lines and circles that arise in the combinatorial structures we
derive from polynomials have appeared in many places over the years—we list a
small fraction of them here. In this article, we label the points in Polymt

d ( )
by preimages of line segments (banyans or branched lines). Similarly, Gauss’s first
proof of the Fundamental Theorem of Algebra [Gau99] utilizes the preimages of the
real and imaginary axes under a complex polynomial. This idea was expanded upon
by Martin, Savitt and Singer in [MSS07] and by Savitt in [Sav09] to introduce the
notion of basketballs, which can be used to label the vertices of our cell structure on
Polymt

d ( ). More recently, generalizations of these line preimages called signatures
of polynomials have appeared in work of A’Campo [A’C20] and Combe [Com].
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We use preimages of circles (cacti or branched circles) to label the points of
Polymt

d ( ). These graphs appeared previously (as quotients of an equivalence re-
lation on a circle) in an unpublished manuscript of W. Thurston that was posthu-
mously completed by his collaborators [TBY+22]. See [DM24] for a more detailed
account of the connections between Thurston’s work and ours. Cacti have also
appeared in fields such as complex geometry [CP91, CW91, EMHZZ96], complex
dynamics [Nek14, Cal22], and algebraic topology [Sal22]. Special care must be
taken when comparing results from different articles, as there are many variations
(including markings and metrics) and definitions for cacti across subdisciplines.

Recent work by Wegert [Weg20], A’Campo [A’C22] and A’Campo–Papadopoulos
[AP24] uses the pullbacks of both lines and circles to study polynomials in a manner
which is similar to ours. In the latter two articles, the authors use this to introduce
open cell structures for both the space Polym

d (C) of monic degree-d polynomials
with arbitrary roots and Polym

d (C0), the subspace of polynomials with distinct
roots. The numbers of top-dimensional cells in these complexes match the numbers
of vertices in our cell structures on Polymt

d ( ) and Polymt
d ( ) respectively, so it

seems likely that the two structures are dual to one another.
Several other recent articles in algebraic topology have featured ideas similar to

ours. Following a presentation by the second author on the contents of this article at
an Oberwolfach mini-workshop [McC24], Bianchi pointed out a connection with his
recent work [Bia22, Bia23]. It appears that Bianchi defines an abstract cell structure
for Polym

d ( ) which matches ours, including an equivalent set of algebraic labels.
His complex, however, does not include a metric. Other relevant work includes
that of Salter [Sal23, Sal24] and Salvatore [Sal22]. Salter’s articles provide an
“equicritical” stratification on Polym

d (C0) which is related to (but coarser than) the
double stratification described in Section 7. The combinatorial tools used in Salter’s
work are similar to ours, but lead to distinct structures. Salvatore introduces a cell
structure for Polymt

d (C0) which uses similar objects (nested trees of cacti), but the
resulting complex does not appear to be directly related to ours. We should also
note that none of these authors connect their complexes to the dual structure on
the braid group.

In this article, we compactify Polymt
d (C) and Polymt

d (C0) to obtain Polymt
d ( )

and Polymt
d ( ), respectively. The space Polymt

d (C0) has several compactifications
from algebraic geometry, and it would be interesting to know more about how our
compactification relates to them. For example, our work is distinct from the well-
known Fulton–MacPherson compactification of Polymt

d (C0), in which collisions of
distinct roots are recorded using their relative positions and velocities [FM94]. In
contrast, each collision in our compactification is described using metric cacti which
record the relative cyclic ordering of the colliding roots.

Another distinguishing feature of our work in comparison to the references men-
tioned above is the concrete connection with the dual presentation for the braid
group. In particular, the identification of Polymt

d ( ) with the order complex
|NCPartd|∆ = ∆([1, δ]) and of Polymt

d ( ) with the interval complex Kd =
K([1, δ]) is new—although it was known to Bessis that Polym

d (C0) deformation
retracts onto a copy of Kd = K([1, δ]) [Bes03, Proposition 10.6]. Similarly, W.
Thurston et al. showed that Polym

d (C0) deformation retracts onto Polymt
d ( )

[TBY+22], but without the cell structure, metric, or the connection with the dual
presentation. Our explicit description of the cell structure for Polymt

d ( ) and the



GEOMETRIC COMBINATORICS OF POLYNOMIALS II 7

induced structure on Polymt
d ( ) will hopefully provide a useful bridge between the

geometric combinatorics of polynomials and the geometry of the braid group.

Generalizations and conjectures. The metric cell structures for the polynomial
spaces Polymt

d ( ) and Polymt
d ( ) presented in this article prompt several imme-

diate generalizations and conjectures. First, we believe that the stratified Euclidean
metric is non-positively curved in the following sense.

Conjecture 1. The stratified Euclidean metric on the space Polymt
d of all monic

degree-d complex polynomials up to translation is CAT(0).

This conjecture about a natural piecewise Euclidean metric on the space of all
polynomials has consequences for the study of braid groups. It is not too difficult to
show that for any fixed d, the space Polymt

d = Polymt
d (C) is CAT(0) if and only if

Polymt
d ( ) isCAT(0), which is true if and only if Polymt

d ( ) is locallyCAT(0). In
other words, these three spaces have closely related curvature properties. Similarly,
Polymt

d ( ) is CAT(0) if and only if Polymt
d ( ) is locally CAT(0). Finally, when

the first three are (locally) CAT(0) the last two are (locally) CAT(0). This means,
in particular, that proving Conjecture 1 for a particular d would establish the main
conjecture in [BM10] for this d, and show that the d-strand braid group Braidd is
a CAT(0) group. We conjecture that this implication is reversible.

Conjecture 2. The stratified Euclidean metric on the space Polymt
d is CAT(0) if

and only if the orthoscheme metric on the dual braid complex Kd is locally CAT(0).

One natural extension of our results comes from generalizing the algebraic labels
on our cell structures. For each Coxeter group W , there is a corresponding Artin
group AW which is the fundamental group of the orbit configuration space YW—
the long-standing K(π, 1) conjecture for Artin groups claims that YW is always a
classifying space for AW . See Paolini’s survey [Pao21] for background and [CD95,
DPS22, Hua24, PS21] for progress on this problem.

In this article, we are concerned with the case where W is the symmetric group
Symd, AW is the braid group Braidd, and YW is the complement of the complex
braid arrangement in Cd. Moreover, YW is homeomorphic to Polymc

d (C0). The
linear and rectangular factorizations of δ defined in this series of articles generalizes
to an arbitrary Coxeter group W , with δ replaced by a Coxeter element of W . By
mimicking our construction of the branched annulus complex with algebraic cell la-
bels, we are able to define a metric bisimplicial structure on a manifold with corners
Brm

W,δ( ). By Theorems D, E and F, the space Brm
d ( ) is a compactification of

Polymt
d (C0). We conjecture that this holds for at least some class of more general

Coxeter groups.

Conjecture 3. Let W be a Coxeter group and let δ ∈ W be a Coxeter element.
Then the bisimplicial complex Brm

W,δ( ) is a compactification of the orbit configu-
ration space YW .

The fundamental group of Brm
W,δ( ) is the “dual Artin group” A∗

W,δ, which has
played an important role in several recent advances in the study of Artin groups
[DPS22, MS17, PS21] and is conjectured to be isomorphic to the standard Artin
group AW in all cases. If Conjecture 3 can be proved with a similar compactification
to that of Theorem F, this would imply the isomorphism A∗

W,δ
∼= AW .
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Structure of the article. The article is divided into three parts. Part 1 describes
the geometric and combinatorial data that can be extracted from a single monic
complex polynomial. Part 2 shifts attention to spaces of polynomials and proves
Theorems E, F and G. And in Part 3 we combine the results from Parts 1 and 2 to
establish Theorems A, B, C and D about specific cell complexes. Although some of
the content included here already exists in the literature, it is almost always written
to handle much more general situations. These discussions are intended to make
our results accessible to a broader audience.

Finally, it is important to note that the geometric combinatorics described in
Part 1 is similar to but distinct from those described in the first article in the
series. In [DM22] the polynomial p had to have distinct roots and the constructions
used the polar coordinates of its (necessarily nonzero) critical values. Here the
polynomial p is arbitrary and the constructions use the rectangular coordinates
of its (possibly zero) critical values. A connection between the two versions is
discussed in Section 15.
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Figure 2. The Young diagram of the integer partition λ = 2213.

Part 1. A Single Polynomial

The goal of Part 1 is to introduce 4 cell complexes constructed from a monic
complex polynomial p : C → C with critical values in a fixed closed rectangle , and
then to define a map based on the information they contain. The four complexes
Pp, P

′
p, Qp, and Q′

p focus on the regular points, critical points, regular values and
critical values of p, respectively. The letter P stands for “polygon” and indicates
a subdivided polygon in the domain. The letter Q stands for “quadrilateral” and
indicates a subdivided rectangle in the range. The polynomial p sends the “point”
complexes with a P to the “value” complexes with a Q, and the “critical” com-
plexes with primes are cellular duals of the “regular” complexes without primes.
Since a cell complex and its dual contain essentially the same information, we are
really just introducing two complexes in two different forms. In Part 3 we use the
combinatorial structure of the regular point complex Pp and the metric structure of
critical value complex Q′

p to construct compact piecewise Euclidean cell complexes.
Part 1 is structured as follows. Section 1 establishes conventions for combina-

torial objects and maps. Section 2 does the same for polynomials and branched
covers. Section 3 constructs the four complexes listed above. Section 4 reviews
planar noncrossing combinatorics. And Section 5 defines a single map that col-
lates the all of the geometric and combinatorial information extracted from monic
polynomials.

1. Partitions and Multisets

This section records facts about basic combinatorial objects and the maps be-
tween them defined for any space X. We begin with an example illustrating set
partitions, multisets, and integer partitions, followed by the precise definitions.

Example 1.1 (Partitions and multisets). Let X be a space with five distinct points
a, b, c, d, e ∈ X and consider the 7-tuple x = (a, b, a, c, d, c, e) ∈ X7. The set parti-
tion recording which coordinates are equal is [λ] = {{1, 3}, {2}, {4, 6}, {5}, {7}}, or
13|2|46|5|7. If we forget which entry came from which coordinate, the result is the
7-element multiset M = {a, a, b, c, c, d, e} = {a2, b1, c2, d1, e1}, or a2b1c2d1e1. The
multiplicities of M , {2, 1, 2, 1, 1}, form a partition λ = 2213 of the number 7, which
can also be viewed as the sizes of the blocks of the set partition [λ]. See Figure 3.
In symbols, |M | = 7 and λ ⊢ 7. The Young diagram of λ is shown in Figure 2.

In this article, the structure of the space X is always extremely simple, and we
indicate its shape using a visual shorthand.

Definition 1.2 (Visual shorthand). The symbol is a visual shorthand for the
closed unit disk D or, more generally, for any closed topological disk embedded as
a subspace of C, including , which is shorthand for a closed rectangle. Although
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the intended meaning should be clear from context, it is also rarely necessary to
sharply distinguish between the unit disk and a topological disk. See Corollary 10.3.
Similarly, is the unit circle T (or any embedded circle), is the closed unit
interval I = [−1, 1] (or any embedded arc), and is the closed annulus formed by
removing the open disk of radius 1/2 from the closed unit disk D (or any embedded
topological closed annulus). We write , , and for the points in the interior of
, and and for the points in other than its two endpoints. Finally, let
denote the unit circle with the point −1 removed.

Remark 1.3 (Spaces). The reader may assume that X is an elementary subset
of C, such as an interval , a rectangle , a circle , an annulus , or C itself.
In particular, X is a path-connected locally Euclidean Riemannian manifold of
dimension m > 0, possibly with boundary and possibly with corners.

Definition 1.4 (Set partitions). Let [n] = {1, 2, . . . , n}. A set partition of [n] is a
partition of [n] into pairwise disjoint nonempty subsets whose union is [n]. There
is a standard shorthand notation for a set partition when n is small. Commas
and brackets are removed, the elements in each block are listed in increasing order,
and the blocks, separated by vertical bars, are listed in increasing order of their
minimal elements. See Example 1.1. We write SetPartn to denote the collection
of all set partitions of [n] partially ordered by refinement. The poset SetPartn is
also known as the (set) partition lattice. Its unique minimum element is the discrete
set partition 1|2| · · · |n with n blocks of size 1, and its unique maximum element is
the indiscrete set partition 12 · · ·n with 1 block of size n.

We often write [λ] ⊢ [n] as notation for a set partition to highlight the parallel
with integer partitions, but it needs to be used with caution. See Remark 1.11.

Definition 1.5 (Multisets). A (finite)multiset M = (S,m) is a finite set S together
with a multiplicity function m : S → N = {1, 2, . . .}. The number m(x) is the
multiplicity of x ∈ S. A (finite) multiset can be concisely described using the
notation M = {xm1

1 , xm2
2 , . . . , xmk

k } where the underlying set is S = {x1, . . . , xk},
with xi = xj if and only if i = j, and where the exponent mi = m(xi) denotes the
multiplicity of the element xi. In the shorthand notation, the commas and braces
are removed. All multisets in this article are finite and we drop the adjective. The
size of a multiset is the sum of its multiplicities: |M | = |M |Mult = n =

∑
i mi. This

is the unmarked notion of size for multisets. The number of distinct elements in M
is the size of M as a set : |M |Set = |S| = k where S = Set(M). When |M | = n,
M is an n-element multiset, and when its elements are in X, it is a multiset in
X. The collection Multn(X) of all n-element multisets in X can also be viewed
as Symn\Xn, the orbits in Xn under the coordinate permuting symmetric group
action, since being able to permute the coordinates makes their order irrelevant.
Given our assumption on spaces (Remark 1.3) Xn a locally Euclidean manifold
of dimension mn where m = dim(X), possibly with boundary and/or corners.
The topology on Multn(X) comes from the quotient map Xn → Multn(X) =
Xn/Symn. In this article,X is always a subset of C, so all multisets have elements in
C, and Multn is used as shorthand for Multn(C). In general, we omit arguments
in this manner only when the argument is all of C.

Definition 1.6 (Integer partitions). A partition of a positive integer n can be
viewed as a multiset of positive integers whose sum is n, but care is required since
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x = (a, b, a, c, d, c, e) [λ] = 13|2|46|5|7 Xn SetPartn

M = a2b1c2d1e1 λ = 2213 Multn(X) IntPartn

Figure 3. An n-tuple x ∈ Xn determines a set partition [λ] ⊢ [n]
in SetPartn, an n-element multiset M ∈ Multn(X), and an
integer partition λ ⊢ n in IntPartn. In the example n = 7.

partitions and multisets have distinct standard terminology. Let λ be a multiset of
k positive integers whose sum is n. The elements of λ are its parts, the number k is
its length and the number n is its size. We write len(λ) = k and λ ⊢ n. Note that
the length of λ (as a partition) is its size as a multiset, and its size (as a partition)
is its sum. The parts of a partition are typically listed in weakly decreasing order,
summarized using exponents, and visualized using Young diagrams as in Exam-
ple 1.1. Concretely, a typical partition is of the form λ = λa1

1 λa2
2 · · ·λaℓ

ℓ , where
λ1 > λ2 > · · · > λℓ are its ℓ distinct parts, the number ai indicates the number of
times the part λi occurs, its length k = a1 + · · ·+ aℓ is the total number of parts,

and its size n =
∑ℓ

i=1 ai · λi is the sum of its parts. We write IntPartn to denote
the collection of all integer partitions of n.

The maps in Figure 3 form a commuting square, and they are defined as follows.

Definition 1.7 (Maps). The map Xn → SetPartn sends each n-tuple x to the
set partition [λ] recording which of its coordinates are equal. The map Xn →
Multn(X) sends each n-tuple x to its multiset M of coordinates. The map
Multn(X) → IntPartn sends a multiset M to its multiset of multiplicities. And
the map SetPartn → IntPartn sends the set partition [λ] to the multiset of its
blocks sizes. The vertical maps are always onto and the horizontal maps are onto
since X has infinitely many elements (Remark 1.3). For the top and left maps, we
name the maps by their output, writing M = Mult(x) and [λ] = SetPart(x). For
the three maps (horizontal, vertical and implicit diagonal) that end at IntPartn,
we describe λ as the shape of M , the shape of [λ] and the shape of x. and write
λ = Shape(M) = Shape([λ]) = Shape(x). The common name for these maps is
unambiguous in practice since the object being evaluated determines the domain.

Remark 1.8 (Functions). The elements of the four spaces in Figure 3 can also be
interpreted as functions. A point x ∈ Xn corresponds to a function f : [n] → X,
and note that both the domain and range have distinguishable elements. If we
make the elements of the domain / the range / both the domain and the range
indistinguishable, then f carries less information, and the remaining information is
captured by the multiset M / the set partition [λ] / the shape λ.

The integer partitions of n can be viewed as a poset or as an acyclic category.

Remark 1.9 (Acyclic categories). An acyclic category is a category where (1)
the only arrows starting and ending at the same object are the identity arrows,
and (2) if there is a nonidentity arrow f from a to b, there is no arrow from b
to a. Acyclic categories are to posets as Hatcher’s ∆-complexes are to simplicial
complexes. Every poset can be viewed as an acyclic category by using the elements
as objects and drawing a single arrow p → q if and only if p ≤ q. In the other



12 MICHAEL DOUGHERTY AND JON MCCAMMOND

1234

1|234134|2124|3123|4 12|34 13|24 14|23

12|3|4 13|2|4 14|2|3 1|23|41|24|31|2|34

1|2|3|4

Shape

Figure 4. The poset homomorphism Shape from the 15 element
poset SetPart4 to the 5 element poset IntPart4. The dashed
lines enclose set partitions sent to the same integer partition.

direction, every acyclic category has an underlying poset structure by defining p ≤ q
if there exists an arrow p → q. Note that sequentially applying both constructions
to a poset reproduces the origin poset, but applying both constructions to an acyclic
category produces a quotient category where all arrows with the same endpoints
have been identified. Acyclic categories were introduced by Andre Haefliger under
the name “small categories without loops” to study complexes of groups [Hae91].
See also [BH99]. The “acyclic category” terminology is from [Koz08].

Definition 1.10 (Ordering integer partitions). If λ is an integer partition and π
is a partition of the parts of λ then there is a new partition µ whose parts are the

sums of the numbers in the blocks of π. We write λ
π→ µ, or simply λ → µ when

the partition π is implicitly understood. If λ = 312112 ⊢ 7 and π = {{3, 2}, {1, 1}},
for example, then µ = 5121. Note that multiple arrows can exist with the same
endpoints. In our example, π′ = {{3, 1, 1}, {2}} is a distinct partition that also
turns λ into µ. The collection of all arrows of this form turn the set IntPartn

into an acyclic category. And it can be simplified to its underlying poset structure

by defining λ ≤ µ if there exists a partition π with λ
π→ µ. With this partial

order IntPartn becomes a bounded graded poset. It is bounded below by the
discrete partition λ = 1n, bounded above by the indiscrete partition λ = n1 and
the grading is determined by the number of parts. The map Shape from SetPartn

to IntPartn can be viewed as a functor between acyclic categories, which simplifies
to an order-preserving rank-preserving poset homomorphism if the acyclic category
structure on IntPartn is replaced with its underlying poset structure. See Figure 4.

The acyclic category of integer partitions is used to index stratifications of poly-
nomial spaces. See Section 7.

Remark 1.11 (Set partition notation). Although we write [λ] ⊢ [n] to denote a set
partition of shape λ ⊢ n, the reader should note that this notation is ambiguous.
In Figure 4, for example, there are 4 distinct set partitions of shape 3111, and
[3111] could refer to any one of them. There is no such ambiguity at either extreme
since the discrete set partition 1|2| · · · |n, with n blocks of size 1, is the unique set
partition of shape 1n and the indiscrete set partition 12 · · ·n, with 1 block of size
n, is the unique set partition of shape n1.
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2. Polynomials and Branched Covers

This section records basic facts about polynomials (2.1), branched covers between
surfaces (2.2), and planar branched covers between disks (2.3).

2.1. Polynomials. For any U ⊂ C, let CU be the complement C\U , so that C0 is
C∗ with 0 = {0}. Let D be the closed unit disk with unit circle boundary T = ∂D.

Definition 2.1 (Polynomials). For each d ∈ N, let Polyd ⊂ C[z] be the collection
of complex polynomials of degree d. Concretely, for p ∈ Polyd, we write p(z) =
c0z

d+c1z
d−1+ · · ·+cd−1z+cd with c0 ∈ C0 and ci ∈ C for i ∈ [d]. The polynomial

p is monic if c0 = 1 and centered if c1 = 0. Let Polym
d be the subspace of

monic polynomials and let Polymc
d be the subspace of monic, centered polynomials.

Using coefficient coordinates, there are natural homeomorphisms Polym
d

∼= Cd and
Polymc

d
∼= Cn where n = d− 1.

Definition 2.2 (Points and values). Let p : C → C be a degree-d polynomial. The
roots of the derivative p′ form an n-element multiset (where n = d− 1) called the
critical points of p. In symbols, if p′(z) = d · c0 · (z − z1)

n1 · · · (z − zk)
nk , then

cpt = cpt(p) = {zn1
1 , . . . , znk

k }. The zi are the k critical points, the ni = nzi

are their multiplicities, and we typically order the zi so that the ni are weakly
decreasing. Note that n = n1+· · ·+nk = d−1 is the size of cpt. The critical values
of p are the images of the critical points, and the n-element multiset cvl = cvl(p) is
p(cpt). The points in the domain and the values in the range that are not critical
are regular points and regular values. A subset is regular if every element is regular.
Finally, denote the full preimage of cvl by cpt+ = {z1, . . . , zm} = p−1(cvl), where
m ≥ k. If m > k, the regular points in cpt+ are listed at the end. We still have
n1 + · · ·+ nm = n since ni = 0 for regular points.

The following polynomial is going to be our running example throughout Part 1.

Example 2.3. Let p be the complex polynomial

z5 +

(−17 + 6i

4

)
z4 +

(
73− 63i

15

)
z3 +

(
34− 12i

25

)
z2 +

(−308 + 252i

125

)
z.

Its critical points are cpt(p) = {− 2
5 ,

2
5 ,

7−7i
5 , 10+i

5 }, all with multiplicity 1, and its
(rounded) critical values are cvl(p) ≈ {.8 − .6i,−.6 + .5i,−8.5 − 4.3i, 3.6 − 6.9i},
again all with multiplicity 1. The critical values are listed in the same order as the
critical points: for example, p( 25 ) ≈ −.6+ .5i. Figure 7 on page 20 shows the range
of p with its 4 critical values marked as yellow dots. Figure 10 on page 25 shows
the domain of p with its 4 critical points marked as yellow dots.

Polynomials are examples of planar branched covers, and general branched covers
are locally modeled on degenerate polynomials.

Definition 2.4 (Degenerate polynomials). The polynomial p(z) = a · (z − b)d + c
of degree d > 1 is degenerate in the sense that both its critical point multiset
cpt(p) = {bn} and its critical value multiset cvl(p) = {cn} are indiscrete, and as
far from generic as possible. Regular values have d point preimages under p, but
the critical value c has only one, so c has n = d− 1 missing preimages. The power
polynomial p : C → C with p(z) = zd is the identity when d = 1 and degenerate for
d > 1.
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X Y Z W

Z W Z W

p

f g

p

h

q q

Figure 5. The maps p and q on the left look alike. The maps p
and q on the right are topologically equivalent. The three labeled
vertical maps are homeomorphisms, and both squares commute.

Definition 2.5 (Branched even coverings). Let d = (d1, . . . , dm) ∈ N be an m-
tuple of natural numbers with sum d = d1 + · · ·+ dm. Let pd : Z → W be the map
where W = D, Z =

⊔
i∈[m] D is a disjoint union of m copies of the closed unit disk

D, and the ith component map pi : D → D is the power map pi(z) = zdi . And let
pd : Z → W be the map from the interior of the domain to the interior of the range.
When d = 1 = (1, 1, . . . , 1), each pi is a homeomorphism and pd is the prototypical
even covering used to define a (finite sheeted) covering map. For general d we say
that pd is a branched even covering. When a degenerate component map exists,
0 ∈ W is a (unique) critical value and its multiplicity is d−m. The critical points
are at the origin in components where the component map is degenerate.

2.2. Branched covers. Branched covers are surface maps that locally look like
branched even covers. Here is what we mean by “surface” and “looks like”.

Definition 2.6 (Surfaces). Unless otherwise stated, all surfaces in this article are
either closed compact oriented 2-dimensional manifolds, possibly with boundary, or
open surfaces homeomorphic to the interior of one of our closed surfaces. We use
boldface letters for closed surfaces, non-bold letters for open surfaces, and the same
letter for a closed surface and its open interior, i.e. a closed surface Z has interior

Z. For a connected closed surface Z, let Ẑ be the closed surface without boundary

obtained by attaching a disk to each circle of ∂Z. If Ẑ has genus g, then we say Z has

genus g. The Euler characteristics are χ(Ẑ) = 2−2g and χ(Z) = χ(Z) = 2−2g− b
where b is the number of components of ∂Z. In particular, for connected closed
surfaces, χ(Z) = 1 if and only if Z is a closed disk with g = 0, b = 1.

Definition 2.7 (Maps). For maps between surfaces we make a standing assumption
that the range is always connected, but the domain is allowed to be disconnected.
Note, however, that the number of connected components for any surface considered
here is finite. Let q : Z → W be a map between surfaces. A component map of q
is a restriction of q to a component of its domain. If these have been indexed, qi

is the restriction of q to the ith component Zi.

Definition 2.8 (Equivalent maps). We say that a map q : Z → W looks like a
map p : X → Y if there are homeomorphisms f : Z → X and g : Y → W such that
q = g ◦ p ◦ f . There is also a more restricted notion when X = Z and Y = W
and the homeomorphism of the range must be the identity map. We say that q
is topologically equivalent to p if there is a self-homeomorphism h : Z → Z of the
domain so that q = p ◦ h. In the language of [LZ04], the first version is a flexible
notion of equivalence, and the second is a rigid one. See Figure 5.

Definition 2.9 (Branched covers). Let q : Z → W be a map between open surfaces
(Definition 2.6). Let D ⊂ W be an open disk and let C = q−1(D) be its preimage.
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We say that D is branched evenly covered if the restricted map q : C → D looks like
(Definition 2.8) a branched even covering map pd for some tuple d (Definition 2.5).
The map q is an (open) branched covering map if every point w ∈ W has a neigh-
borhood D which is branched evenly covered. For maps q : Z → W between closed
surfaces (Definition 2.6), we say that q is a (closed) branched covering map if it
restricts to an open branched cover q : Z → W on the interiors and an ordinary
covering map ∂q : ∂Z → ∂W on the boundaries. Not only do closed branched cov-
ers restrict to open branched covers, but every open branched cover (of the open
surfaces being considered) extends to a closed branched cover.

Branched covering maps retain many properties of ordinary covering maps.

Lemma 2.10 (Surjective maps). If q : Z → W is a branched cover, then q is
surjective. In particular, for any w ∈ W, the natural map that sends a preimage
of w to the (index of the) component containing it is onto.

Proof. Let Z1 be a component of Z with z1 ∈ Z1 and w1 = q(z1). Since W is
connected (Definition 2.7), for any w2 ∈ W there is a regular path β from a value
near w1 to a value near w2, where “near” means in a branched evenly covered
neighborhood Di of wi. Once β is lifted to start in the component of q−1(D1)
containing z1, it ends in a component of q−1(D2) containing a lift of w2. □

Definition 2.11 (Branch points). Let q : Z → W be an open branched cover.
By definition, every z ∈ Z has an open disk neighborhood sent to an open disk
neighborhood containing w = q(z) that looks like a power map p(z) = zd for some
unique d = dz. The positive integer dz is the degree of z and the nonnegative integer
nz = dz − 1 is the multiplicity of z. When dz = 1 and nz = 0, p(z) = z is the
identity map and q is a local homeomorphism near z. When dz > 1 and nz > 0, the
point z is a branch point of multiplicity nz. Branch points are also called critical
points or ramification points. The critical values, regular values, regular points,
and the preimage set cpt+ of q are defined exactly as in Definition 2.2. For closed
branched covers q : Z → W, the points z ∈ ∂Z, being regular, have degree dz = 1
and multiplicity nz = 0.

A polynomial is a branched cover, its critical points are its branch points, and the
two notions of multiplicity agree, so the rest of the terminology is also consistent.
Globally, a branched cover is a covering map away from finitely many points.

Definition 2.12 (Degree and metric). Let q : Z → W be a closed branched cover.
If V = Set(cvl) ⊂ W is the set of critical values and U = q−1(V ) = cpt+ ⊂ Z is
the full set of preimages, then the restricted map q : (Z\U) → (W\V ) is a covering
map. Moreover, since W is connected (Definition 2.7), W \ V is connected, and
q has a constant global degree d, making q a d-branched cover. Branched covers
are also called ramified covers. And note that if W has a metric, there is a unique
induced metric on Z so that q is a local isometry except at cpt.

Remark 2.13 (Riemann–Hurwitz formula). Let q : Z → W be a d-branched cover.
If m = |cpt+| and ℓ = |cvl|Set, then q satisfies the Riemann–Hurwitz formula:
(χ(Z) − m) = d · (χ(W) − ℓ), because Euler characteristic is multiplicative for
covering maps.

Lemma 2.14 (Disk preimages). If q : Z → W is a closed branched cover where Z
is connected and W is a closed disk with one critical value, then Z is a closed disk
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with one critical point. Similarly, if q : Z → W is an open branched cover where Z
is connected and W is an open disk with one critical value, then Z is an open disk
with one critical point.

Proof. Open branched covers extend to closed branched covers in our setting, so we
only need to prove the closed version. Let g be the genus of Z, let b be the number
of components of ∂Z and let m = |cpt+|. Since χ(W) = 1 and |cvl|Set = 1, we

have χ(Z) = |cpt+| by Remark 2.13, so 2−2g−b = m and therefore 2 = 2g+b+m.

We know that g ≥ 0 by definition, b > 0 because ∂Z = q−1(∂W) is nonempty, and
m > 0 because q has at least one critical point, so the only solution is g = 0 and
b = m = 1, making Z a closed disk. □

Lemma 2.15 (Degree and preimages). Let q : Z → W be a d-branched cover. For
any w ∈ W, the sum of the degrees of its preimages is d.

Proof. Let q−1(w) = {z1, . . . , zm} and let di be the degree of zi. Let D be a
branched evenly covered neighborhood of w with preimage C = q−1(D). The

∑
di

must be equal to d since any regular point in D has di preimages in the component
of C containing zi, and d preimages total. □

Lemma 2.16 (Degree and multiplicity). If q : Z → W is a d-branched cover and
n is the common size of the multisets cpt and cvl, then n+ χ(Z) = d · χ(W). In
particular, when W is a disk and Z is a disjoint union of b disks, n+ b = d.

Proof. Suppose U = cpt+ = {z1, . . . , zm} and V = Set(cvl) = {w1, . . . , wℓ}. The
sum of the degrees of the zi is

∑
i di =

∑
i(ni + 1) = n+m. By Lemma 2.15, the

sum of degrees of q−1(wj) = d for each j ∈ [ℓ], so the sum of the degrees of the zi
is d · ℓ. Thus n+m = d · ℓ. By Remark 2.13, (χ(Z)−m) = d · (χ(W)− ℓ). Adding
these two equations completes the proof. □

These results hold, of course, for our running example.

Example 2.17. The polynomial p of Example 2.3 has degree d = 5 and multiplicity
n = 4 (Lemma 2.16). It has 4 critical values, so |V | = |cvl|Set = 4. Each critical
value has 4 preimages, one critical point of degree 2 and three regular points of
degree 1, so the sum of the degrees of every value is 5 (Lemma 2.15) and |U | =
|cpt+| = 16. Finally, the domain and range are C with χ(C) = 1, so the Riemann–
Hurwitz formula (Remark 2.13) is satisfied since (1− 16) = 5 · (1− 4).

2.3. Planar branched covers. We now restrict attention to branched covers be-
tween subsurfaces of spheres.

Definition 2.18 (Surfaces in spheres). For any closed surface W ⊂ C ⊂ Ĉ = CP 1

with interior W , let β = ∂W be the union of its simple closed boundary curves,

let W c be the complement of W in Ĉ and let Wc = W c ⊔ β be the closed surface

which is the complement of W in Ĉ. We call Wc the closed complement of W.

Note that Ĉ = W ⊔ β ⊔W c = W ∪Wc, and W is a closed disk if and only if β is
a Jordan curve if and only if Wc is a closed disk. More generally, W is a disjoint
union of closed disks if and only if its closed complement Wc is connected.

Definition 2.19 (Planar branched covers). A (closed) planar branched cover is a
branched cover q : Z → W where Z and W are closed disks, and an (open) planar
branched cover is a branched cover q : Z → W where Z and W are open disks.
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Closed planar branched covers restrict to open planar branched covers and every
open planar branched cover extends to a closed planar branched cover. Also, open
planar branched covers look like branched covers p : C → C, hence the name. Closed
planar branched covers look like branched covers p : D → D. A planar branched
cover with only one critical point is degenerate.

Example 2.20 (Degenerate branched covers). The map p : C → C defined by

p(z) = zd extends to a map p̂ : Ĉ → Ĉ, where Ĉ = CP 1. The map p̂ preserves

the decomposition Ĉ = D ∪ Dc, so it splits into two degenerate planar d-branched
covers p : D → D and pc : Dc → Dc with critical points 0 and ∞, respectively, that
overlap on the d-fold cover ∂p : T → T.

Complex polynomials form the most natural examples of open planar branched
covers, and in the sense described below, the two notions actually coincide.

Remark 2.21 (Polynomials and Branched Covers). Let [p]top denote the topo-
logical equivalence class of a planar branched cover p : C → C presented in Defi-
nition 2.8. When p, q : C → C are complex polynomials, we say that p and q are
linearly equivalent if there is a linear function h(z) = az + b so that p = q ◦ h,
i.e. p(z) = q(az + b). Let [p]lin denote the linear equivalence class of a complex
polynomial p. Since polynomials are planar branched covers and linear maps are
homeomorphisms, there is a well defined function [p]lin 7→ [p]top from polynomials
up to linear equivalence to planar branched covers up to topological equivalence.
In fact, this function is a bijection: every planar branched cover p : C → C is topo-
logically equivalent to a polynomial (surjectivity), and two polynomials that are
topologically equivalent are linearly equivalent (injectivity). See [LZ04, Chapter 1].

Definition 2.22 (Spherical branched covers). A spherical branched cover is a

branched cover q̂ : Ẑ → Ŵ where Ẑ and Ŵ are 2-spheres. Every planar d-branched

cover q : Z → W extends to a spherical d-branched cover q̂ : Ẑ → Ŵ by attaching
the degenerate planar d-branched cover pc : Dc → Dc (Example 2.20) to the bound-

aries. This completes Z to Ẑ and W to Ŵ, and pc agrees with q on the boundary

map ∂q : ∂Z → ∂W. In the other direction, if q̂ : Ẑ → Ŵ is a spherical branched

cover and there is a point wc ∈ Ŵ with only one preimage zc ∈ Ẑ, then removing
a branched evenly covered neighborhood W c of wc and its preimage Zc containing
zc leaves a planar d-branched cover.

Example 2.23 (Non-disk preimages). Let W be a closed disk in Ĉ that does not
contain 0 or ∞, and let Wc be its closed disk complement. Under p̂, the spherical
d-branched cover of Example 2.20, the preimage Z of W is d disjoint topological
disks since W is regular and the preimage Zc of Wc is a connected surface with d
boundary components. In particular, Zc is not a disk, even though Wc is a disk.

The preimage of a disk under a spherical branched cover need not be a disk, but
the preimage under a planar branched cover is a union of disks.

Proposition 2.24 (Disks and preimages). Let p : D → D be a closed planar
branched cover and let W be a closed disk in the range. If ∂W is regular, then
Z = p−1(W) is a disjoint union of b closed disks Zi, its closed complement Zc is
connected, and its boundary ∂Z is a set of disjoint nonnested simple closed curves.
Moreover, the component maps pi : Zi → W are closed planar branched covers, and
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the number of components b is equal to d − nw, where nw is the total multiplicity
of the critical values in W.

Proof. Since ∂W is regular, its preimage ∂Z is a collection of simple closed curves,

and Zc = p̂−1(Wc) is a closed submanifold in Ĉ with ∞ ∈ Zc. Since ∞ is the only
preimage of ∞ (Definition 2.22), Zc is connected (Lemma 2.10), so Z = Z1⊔· · ·⊔Zk

is disjoint union of disks (Definition 2.18). The restricted maps pi : Zi → W
between spaces homeomorphic to D is itself a branched cover since it still satisfies
the required conditions: local conditions are local, a connected component of a cover
is a cover, and the boundary map is a covering. And b = d−nw by Lemma 2.16. □

3. Cell Complexes and Cellular Maps

Given a branched cover p : C → C and a rectangle in the range, we use the
critical values cvl(p) to define 4 complexes: two coordinate complexes Qp and Q′

p

in the range and two branched coordinate complexes Pp and P′
p in the domain.

The focus here is on rectangular coordinates, but similar constructions using polar
coordinates were given in the first paper in this series [DM22]. After defining the
coordinate complexes Qp and Q′

p in the range (3.1), we record the properties of
branched cellular maps (3.2) that make it possible to define the branched coordinate
complexes Pp and P′

p in the domain (3.3).

3.1. Complexes in the range. The constructions in the range are very straight-
forward since we are simply subdividing a rectangle vertically and horizontally
through the critical values of p in the case of Q′

p and at representative regular values
in the case of Qp. The two constructions are not quite “dual” to each other, since
taking cellular duals is not an involution on planar cell complexes with boundary.
We begin with an example of two cell complexes in R, followed by the definitions
to make it precise.

Example 3.1 (Ip and I′p). The real critical value interval I′p for the polynomial
of Example 2.3 is the interval [−10, 5] subdivided at C ′ = {x′

1, x
′
2, x

′
3, x

′
4}, the real

parts of cvl(p). The real regular value interval Ip is an interval that has I′p as its
cellular dual. Figure 6 shows Ip on the top and I′p on the bottom. In the “critical”
interval I′p the x′

i label vertices and in the “regular” interval Ip they label edges.

Definition 3.2 (Intervals). Let [xl, xr] ⊂ R be a compact interval and let I be
[xl, xr] with the structure of a cell complex. The basepoint of I is xℓ. The com-
binatorial cell structure of I is completely determined by the number k of vertices
in its interior. The cell structure of the original interval has 1 edge and 2 vertices
and we say it has been 0-subdivided. More generally we say that I has been k-
subdivided when it has k + 2 vertices xℓ = v0 < v1 < · · · < vk < vk+1 = xr indexed
in the order they occur in R, and k + 1 open edges ei with endpoints vi−1 and vi,
i ∈ [k + 1]. A metric cell structure on I corresponds to a metric k-subdivision. It
has an absolute description that records the locations xi ∈ (xl, xr) = I = int(I) of
the vertices vi, i ∈ [k]. This is a k-element set C = {x1, . . . , xk} ∈ Setk(I), and
we write IC for I with this metric cell structure. Alternatively, it is sufficient to
give a relative description, by listing the relative widths of the k + 1 subintervals.
The weight or relative width wti of the i

th subinterval (xi−1, xi) is the positive real

wti = |xi−xi−1|
|xr−xℓ| . Note that wt1 + · · · + wtk+1 = 1. The metric cell structures
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Figure 6. The real critical value interval I′p, shown on the bottom,
is the interval [−10, 5] subdivided at C ′ = {x′

1, x
′
2, x

′
3, x

′
4}, the

real parts of the critical values of our running example. The real
regular value interval Ip, shown on the top, is an undual of I′p.
It is a subdivision of [−11, 6], subdivided at the midpoints of the
midpoints of the edges of I′p. In the “critical” interval I′p the points
in C ′ label vertices and in the “regular” interval Ip they label edges.

on an interval IC that has been k-subdivided are in bijection with (k + 1)-tuples
Bary(IC) = (wt1, . . . ,wtk+1) of positive reals with sum 1. In Definition 5.12, the
wti are used as the barycentric coordinates of a point in an open k-simplex, hence
the name.

Definition 3.3 (Dual intervals). Let I, I′ ⊂ R be subdivided intervals I = Ik and
I′ = I′k′ . We say that I′ = (I)′ is a dual of I and I =

∫
(I′) is an undual of I′ if the

k′ + 2 vertices of I′ are in bijection with the k + 1 edges of I and each vertex of I′

is contained in the corresponding edge of I. Concretely, k′ = k− 1 and the vertices
V of I and the vertices V ′ of I′ strictly alternative in R, with xi < x′

i < xi+1 for
i = 0, . . . , k′ + 2. Given I, creating a dual I′ = (I)′ involves choosing a point from
each bounded component of R \ V . Given I′, creating an undual I =

∫
(I′) involves

choosing a point from each component of R \ V ′.

The derivative and integral metaphor of Definition 3.3 is inspired by Rolle’s
Theorem. If the vertices xi of I are the distinct simple roots of real polynomial p,
then the roots of its derivative p′ are one choice for the vertices x′

i of its dual I
′.

Example 3.4 (Critical value complex Q′
p). Let p be the polynomial of Exam-

ple 2.3 and let = [−10, 5] × [−9, 2] ⊂ R2 = C be a rectangle in its range,
chosen to contain cvl(p). The critical value complex Q′

p of p with rectangle is
the rectangle after it has been subdivided vertically and horizontally through
the critical values of p. Figure 7 shows the range of p with its 4 critical val-
ues marked as yellow dots. The metric cell complex Q′

p is the product of fac-
tor metric cell complexes I′p and J′

p which subdivide the factors of at the real
and imaginary parts of cvl(p). The real parts of cvl(p), listed in increasing or-
der, are C ′ = {x′

1, x
′
2, x

′
3, x

′
4) ≈ {−8.5,−.6, .8, 3.6}, and the imaginary parts in

increasing order, are D′ = {y′1, y′2, y′3, y′4} ≈ {−6.9,−4.3,−.6, .5}. The metric on
Q′

p can be recorded by listing the relative widths of the open subintervals of I′p
and J′

p. In this case, Bary(I′p) ≈ (.102, .528, .089, .191, .091) and Bary(J′
p) ≈

(.190, .241, .334, .098, .136). Since we are recording relative widths, the sum of each
list is 1. They are used as barycentric coordinates in Definition 5.12.
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Figure 7. The range of the polynomial p of Example 2.3 with its
4 critical values marked as yellow dots. They are shown inside a
rectangle [−10, 5] × [−9, 2] ⊂ R2 = C that has been subdivided
into the critical value complex Q′

p.

Example 3.5 (Regular value complex Qp). The regular value complex Qp for the
polynomial p of Example 2.3 with rectangle is constructed from the critical value
complex Q′

p and its factor complexes I′p and J′
p. Specially, if Ip is any interval

complex whose dual is I′p and Jp is any interval complex whose dual is J′
p, then

the complex Qp = Ip × Jp whose dual is Q′
p is the regular value complex for p with

rectangle . The choices made when constructing Qp from Q′
p impact the metric on

Qp, but its combinatorial cell structure is well-defined. Let I and J be the intervals
that are subdivided to form Ip and Jp, and let Q be the rectangle that is subdivided
to form Qp. Figure 7 shows one choice for Q = I × J. The enlarged rectangle is
[−11, 6] × [−10, 3], and points C = {x1, . . . , x5} and D = {y1, . . . , y5} are chosen
to be the midpoints of the corresponding intervals in I′p and J′

p, respectively. The
vertex z = (xℓ, yb) is its basepoint and the opposite vertex w = (xr, yt) is its
breakpoint.

Definition 3.6 (Coordinate rectangles). Let ℜ : C → R and ℑ : C → R be maps so
that for any z = x+ yi ∈ C, ℜ(z) = x is its real part, and ℑ(z) = y is its imaginary
part. Let I = (xℓ, xr) and J = (yb, yt) be two non-empty open intervals in R. Their
closures I = [xℓ, xr] and J = [yb, yt] have a natural cell structure with open edges
I and J , vertices xℓ, xr, yb and yt, and basepoints xℓ and yb. They determine a
coordinate rectangle Q = I+Ji = {z | ℜ(z) ∈ I,ℑ(z) ∈ J}. Equivalently, Q = I×J
under the natural identification of C with R2.
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Figure 8. The range of the polynomial of Example 2.3 with its
4 critical values marked as yellow dots. They are shown inside a
rectangle [−11, 6] × [−10, 3] ⊂ R2 = C that has been subdivided
into the regular value complexQp. The basepoint z and breakpoint
w are also marked.
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Figure 9. The vertices and sides of Q = I + Ji are shown on
the left, including its basepoint z and its breakpoint w. The 10
points of a (3, 2)-configuration induced by C = {x1, x2, x3} ⊂ I
and D = {y1, y2} ⊂ J are shown on the right.

Definition 3.7 (Sides and cells). The rectangle Q has a natural cell structure. The
sides of Q are the open edges of the top side T = I×{yt}, bottom side B = I×{yb},
left side L = {xℓ} × J, and right side R = {xr} × J. The vertex z = (xℓ, yb) is
its basepoint and the opposite vertex w = (xr, yt) is its breakpoint. The isometric
side identifications fB : B → I, gR : R → J, fT : T → I, and gL : L → J, drop the
fixed coordinate. The intervals I and J are oriented left-to-right as subsets of R
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and the sides of Q are oriented via their side identifications: B and T are oriented
left-to-right; L and R are oriented bottom-to-top. In the boundary ∂Q, L and T
are oriented clockwise while B and R are oriented counterclockwise.

Cell structures on I and J produce a product cell structure on Q = I× J.

Definition 3.8 (Rectangles and subdivisions). Let Q = I × J be a coordinate
rectangle (Definition 3.6). When I is k-subdivided and J is l-subdivided, we say
Q has been (k, l)-subdivided and has a (k, l)-structure. It has (k+ 1)(l+ 1) 2-cells,
(k + 1)(l + 2) horizontal edges, (k + 2)(l + 1) vertical edges, and (k + 2)(l + 2)
vertices vi,j = (xi, yj). The k · l new vertices in the interior are those with
i ∈ [k] and j ∈ [l]. When I and J have been given metric cell structures IC
and JD, the rectangle Q has a metric cell structure QC,D. Using the side iden-
tifications, the sides of QC,D have metric cell structures TC , BC , LD, and RD.
When C = {x1, x2, . . . , xk} and D = {y1, y2, . . . , yl}, we write CT = {t1, . . . , tk},
CB = {b1, . . . , bk}, DL = {ℓ1, . . . , ℓl}, and DR = {r1, . . . , rl}, for the interior ver-
tices of TC , BC , LD, and RD, respectively. The 2(k+ l) new vertices in ∂QC,D are
a metric (C,D)-configuration and a combinatorial (k, l)-configuration. The right
hand side of Figure 9 shows the 10 points of a (3, 2)-configuration.

Definition 3.9 (Critical value complex Q′
p). Let p : C → C be a planar branched

cover, and let = [x′
ℓ, x

′
r] × [y′b, y

′
t] be a coordinate rectangle in the range with

cvl(p) ⊂ . Define E′ = Set(cvl(p)) and let C ′ = ℜ(E′)∩ I ′ and D′ = ℑ(E′)∩J ′,
the real and imaginary parts of E′ in the open intervals I ′ and J ′, respectively. Let
I′p = I′C′ , J′

p = J′
D′ and Q′

p = Q′
C′,D′ (Definitions 3.2 and 3.8). This is the unique

minimal horizontal and vertical subdivision of so that cvl(p) is in the 0-skeleton.
We call Q′

p the critical value complex on , whose factors are the real critical value
complex I′p and the imaginary critical value complex J′

p of p on .

Remark 3.10 (Cells and sides). The cell structure Q′
p is almost entirely indepen-

dent of the choice of , but changes occur depending on whether or not the sides
of are regular. For example, if a rectangle ⊃ cvl(p) contains a critical value
in its right side and we slightly extend I′ to the right so that this doesn’t happen,
then the new extended I′p has one more subdivision than the old I′p and the new
extended version of Q′

p has an extra row of 2-cells on the right compared to the
previous Q′

p. Similar comments apply to the other sides. Given a branched cover
p, one could simply choose a rectangle large enough so that its sides are regular,
eliminating this dependency, but we need to allow critical values in the boundary
of in order to create compact spaces of polynomials. See Lemma 10.5 in Part 2.

Definition 3.11 (Regular value complexQp). Let Ip be a subdivision of an interval
I = [xℓ, xr] and let Jp be a subdivision of an interval J = [yb, yt] so that I′p = (Ip)

′

and J′
p = (Jp)

′ as cellular duals. In other words Ip =
∫
(I′p) is an undual of

I′p and Jp =
∫
(J′

p) is an undual of J′
p. The product of the real regular value

complex Ip and the imaginary regular value complex Jp is the regular value complex
Qp = Ip × Jp for p based on . It is based on in the sense of Remark 3.10, but
it is drawn on the larger rectangle Q with = Q′ ⊂ int(Q) by construction.
Extending the notation of Definition 3.3, we write Qp =

∫
(Q′

p) since Qp is an
undual of Q′

p. Note that if Q′
p is (k′, l′)-subdivided, then Qp is (k, l)-subdivided

with k = k′ + 1 and l = l′ + 1. The basepoint z = (xℓ, yb) and breakpoint w =
(xr, yt) are marked because they are needed. The basepoint is used when computing
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fundamental groups (Definition 11.1), and the breakpoint is used when indexing the
sides of a branched rectangle (Definition 5.2). Note that we mark a basepoint and
a breakpoint only on the regular value complex Qp where both are regular, and not
on the critical value complex Q′

p where they may not be regular.

3.2. Branched cellular maps. A cell complex in the range of a planar branched
cover with regular edges induces a cell structure on its preimage and there is a
branched cellular map between them. A cellular map between cell complexes is one
that maps each cell in the domain homeomorphically to a cell of the same dimension
in the range. A branched cellular map allows branching in 2-cells.

Definition 3.12 (Branched cellular maps). Let p : Z → W be a branched covering
map between surfaces that restricts to a map p : X → Y from a cell complex X ⊂ Z
to a cell complex Y ⊂ W. We say that the restricted map p is a branched cellular
map when (1) for each open i-cell in X there is an open i-cell in Y that contains
its image under p, (2) the maps between 1-cells are homeomorphisms and (3)
the maps between open 2-cells are open planar branched covers (Definition 2.19).
In particular, every branched cellular map looks like a cellular map between cell
complexes if you only look near the 1-skeleton.

Lemma 3.13 (Disk preimages). Let p : Z → W be a planar branched cover and let
Y ⊂ W be a cell complex. For every open 2-cell F in Y, the preimage p−1(F ) is a
disjoint union of open 2-cells and the component maps are planar branched covers.

Proof. Let WF ⊂ F be a closed disk such that all of the critical values of p in F
are in the interior of WF . By Proposition 2.24, its preimage ZF = p−1(WF ) is a
union of disks, and the preimage of the open annulus region F \WF , being regular,
is a union of open annuli which provide an annular padding around the components
of ZF , showing that the components of p−1(F ) are open disks. □

Let Y ⊂ W be a cell complex in the range of a branched cover. We say that
Y is 1-regular if the open 1-cells of Y are regular. Note that the regular value
complex Qp and the critical value complex Q′

p are both 1-regular by construction:
in the regular case because the critical values lie in 2-cells and in the critical case
because the critical values are 0-cells. For 1-regular cell complexes in the range of
a branched cover, the preimage has a cell structure.

Definition 3.14 (Induced cell structures). Let p : Z → W be a planar branched
cover. If Y ⊂ W is a 1-regular cell complex, then its preimage X = q−1(Y) has an
induced cell structure from Y via q and the restricted map p : X → Y is a branched
cellular map. The i-regions of X are the connected components of the preimages
of the open i-cells of Y with the obvious attaching maps. The 1-regions in X are
open 1-cells (since the open 1-cells are evenly covered), and the 2-regions are open
2-cells by Lemma 3.13. The assumption that p is a planar branched cover is crucial
here, since Example 2.23 gives an example where a preimage of a closed disk is a
closed surface with multiple boundary cycles. Finally, if Y has a metric and X has
the induced metric, then p is a local isometry away from the critical points in X.

For our purposes, the most important cell complexes are disk diagrams.

Definition 3.15 (Disk diagrams). A disk diagram Y is a compact contractible cell
complex embedded in a surface W. If Y is homeomorphic to a closed disk, it is
nonsingular, otherwise it is singular. For disk diagrams, being singular is equivalent
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to having a cut point, or even a local cut point, whose removal (locally) disconnects
Y. Disk diagrams can also be characterized as cell complexes embedded in a surface
where there are arbitrarily small neighborhoods that are topological disks. When
the surface W containing the (singular or nonsingular) disk diagram Y is itself a
disk, W deformation retracts to Y.

Remark 3.16 (Components and critical complexes). Let p : Z → W be a pla-
nar branched cover, let Y ⊂ W be a disk diagram and let WY be a small closed
disk neighborhood of Y so that any critical values of p in WY are in Y. By
Proposition 2.24, the preimage ZY = p−1(WY) is a union of disks and the com-
ponent maps pY

i : ZY
i → WY are planar branched covers. In particular, working

component-by-component, restricting Z to ZY
i , W to WY, and p to pY

i , reduces
the general case to a set of special cases in with cvl(qY

i ) ⊂ Y.

Corollary 3.17 (Disk diagrams). If p : Z → W is a planar branched cover and
Y ⊂ W is a 1-regular disk diagram, then X = p−1(Y) is a disjoint union of disk
diagrams. In particular, if cvl(p) ⊂ Y, then X itself is a disk diagram.

Proof. By Remark 3.16 it is sufficient to prove this when cvl(p) ⊂ Y and Z is
a disk. In this case, X is a cell complex and the map p : X → Y is a branched
cellular map (Definition 3.12). Moreover, the deformation retraction from W to Y
(Definition 3.15) lifts to a deformation retraction from Z toX (since the complement
of Y is covered by the complement of X). Since X and Z are homotopy equivalent,
X is contractible. □

It is easy to determine whether or not the preimage disk diagram is singular.

Corollary 3.18 (Singular diagrams). Let p : Z → W be a planar branched cover
that restricts to a map X → Y between disk diagrams. When Y is singular, X is
singular. And when Y is nonsingular, X is singular if and only if ∂X contains a
critical point of p.

Proof. Suppose Y is singular and let v be a local cut vertex in ∂Y (Definition 3.15).
Any u in ∂X sent to v is also a local cut vertex, regardless of whether the local model
is branched, so X is also singular. Next, suppose Y is nonsingular and there are no
critical points in the boundary of X. Then the local models are homeomorphisms,
there are no local cut points in the boundary of X, so X is also nonsingular. Finally,
suppose Y is nonsingular and there is a critical point u in the boundary of X. Its
image v is a critical value in the boundary of Y, the branched local model near u
shows that u is a local cut vertex, and X is singular. □

Example 3.19 (Branched lines and banyans). Let q : Z → W be a planar branched
cover, and let Y ⊂ W be a closed interval. If Y is subdivided so that any critical
values in Y are vertices, then its preimage X = q−1(Y) is a 1-complex (Defini-
tion 3.14) with components X = X1 ⊔ · · · ⊔ Xk. The 1-complexes Xi are trees
because they are contractible (Corollary 3.17). We call them branched lines or
banyan trees, a type of tree with multiple branches and multiple roots. The cell
complex X is a banyan grove, a type of forest.

Example 3.20 (Branched disks and cacti). Let q : Z → W be a planar branched
cover, and let Y ⊂ W be a closed disk. If Y is given the cell structure of a
nonsingular 2-complex with only one 2-cell and a subdivided boundary ∂Y with
regular edges, then its preimage X = q−1(Y) is a 2-complex (Definition 3.14)
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Figure 10. The domain of the polynomial p of Example 2.3 with
its 4 critical points marked as yellow dots. They are shown inside
the critical point complex P′

p, which is the preimage of the critical
value complex Q′

p shown in Figure 7.

with components X = X1 ⊔ · · · ⊔ Xk. The 2-dimensional cell complexes Xi are
disk diagrams (Corollary 3.17) called branched disks or cactus diagrams, since they
resemble prickly pear cacti. The cell complex X is a garden of cactus diagrams.
The components ∂Xi of ∂X are the boundaries of the components Xi of X. The
component ∂Xi is a branched circle or cactus graph, and the full 1-skeleton ∂X is
a garden of cactus graphs.

Metric banyans and metric cacti appeared in the first paper in this series [DM22],
but the definitions given here are more concise.

3.3. Complexes in the domain. We now define the regular point complex Pp

and the critical point complex P′
p using Definition 3.14.

Example 3.21 (Point complexes P′
p and Pp). Let p be the polynomial of Exam-

ple 2.3, let Q′
p be the critical value complex in the range of p shown in Figure 7,

and let Qp be the regular value complex in the range of p shown in Figure 8. The
critical point complex P′

p in the domain of p is shown in Figure 10. The pullback
metric on P′

p makes each of the 125 topological 2-cells into a Euclidean rectangle
with a metric determined by its image in Q′

p. The disk diagram P′
p is nonsingular,

in this case, because ∂Q′
p is regular (Corollary 3.18). The regular point complex Pp

in the domain of p is shown in Figure 11. Since the branching occurs in the interior
of 2-cells, the 1-skeleton of Pp is a 5-sheeted cover of the 1-skeleton of Qp, and it
has a 5-branched (5, 5)5-structure. The side labels are explained in Section 5.
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Figure 11. The domain of the polynomial p of Example 2.3 with
its 4 critical points marked as yellow dots. They are shown inside
the regular point complex Pp, which is the preimage of the regular
value complex Qp shown in Figure 7. The breakpoint preimages
wm→m+1 and basepoint preimages zi are also marked.

Definition 3.22 (Point complexesPp andP′
p). Let p : C → C be a planar branched

cover, and let = [x′
ℓ, x

′
r] × [y′b, y

′
t] be a coordinate rectangle in the range with

cvl(p) ⊂ . The coordinate complexes Qp and Q′
p in the range are both 1-regular,

and by Definition 3.14 their preimages under p have induced cell structures. We
call these cell complexes in the domain the regular point complex Pp and the critical
point complex P′

p. The map p restricts to the regular complex map Pp → Qp and
the critical complex map P′

p → Q′
p. Note that the cell structure on Q′

p and the
critical complex map P′

p → Q′
p can be reconstructed simply from the cell structure

of P′
p. The regular complex map is a branched cellular map, and the the critical

complex map is a cellular map since the rectangular 2-cells of the critical value
complex Qp are regular by construction. The regular complex map is a d-sheeted
covering map between their 1-skeletons because the 1-skeleton of Qp is regular. If
Qp has a (k, l)-structure (Definition 3.8), then we say that Pp has a d-branched
(k, l)d-structure.

Remark 3.23 (Unique geodesics). The critical map from P′
p to Q′

p is a cellular
map between piecewise Euclidean complexes built out of Euclidean rectangles. The
complex Q′

p, as a subdivided rectangle, is obviously a CAT(0) metric space, and so
is P′

p since every interior vertex has an integer multiple of 2π in angle. In particular,
both spaces have unique geodesics [BH99].

Remark 3.24 (Combinatorial invariance). Technically speaking, the construction
of the regular point complex Pp depends on the regular value complex Qp which
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in turn depends on a choice of subdivided intervals Ip and Jp that have I′p and
J′
p as cellular duals, but the combinatorial structures of Ip, Jp, Qp and Pp are

independent of these choices. In particular, continously varying the choice of ver-
tices of Ip and Jp, continuously varies the 1-skeleton of Qp and continuously varies
the 1-skeleton of Pp (since this is taking place in the regular portion of the range)
without changing any of their cell structures. It does, of course, still depend on
the choice of rectangle since this changes the cell structure of the critical value
complex Q′

p (Remark 3.10).

4. Noncrossing Combinatorics

The combinatorial structure of the regular point complex Pp can be described
using planar noncrossing combinatorics. This section establishes conventions for
noncrossing partitions (4.1), drawn on planar branched rectangles (4.2), and it
connects them to noncrossing matchings (4.3) and noncrossing permutations (4.4).
Since these structures are associated to planar d-branched covers and degree-d
polynomials, we use [d] as our indexing set.

4.1. Noncrossing partitions. Noncrossing partitions can be defined combinato-
rially, metrically, and topologically. The combinatorial version is the simplest, the
metric version explains the name, and the topological version, introduced here, is
the most convenient to use in our context. We begin with some basic notation for
points and subsets of the complex plane.

Definition 4.1 (Points and subsets). Recall that D is the closed unit disk and
T = ∂D is its unit circle boundary. Let e : C → C0 be the function e(z) = exp(2πiz)

that sends R to T with kernel Z. The dth roots of unity d
√
1 = {e(j/d) | j ∈ [d]}

are indexed by j ∈ [d], viewed as residue classes of the integers mod d. More
generally, every d-element subset of T can be identified with the integers mod d
by sending 1 to the element with smallest positive argument, and proceeding in a
counterclockwise fashion around the circle.

Definition 4.2 (Combinatorial noncrossing partitions). A set partition [λ] ⊢ [d]
is a (combinatorial) noncrossing partition if whenever there is a 4-element subset
i < j < k < ℓ in [d] with i and k in the same block, and j and ℓ in the same block,
then all four are in the same block. The collection NCPartd of all noncrossing
partitions of [d], ordered by refinement, is an induced subposet of SetPartd.

Definition 4.3 (Metric noncrossing partitions). Let d
√
1 ⊂ C be the dth roots of

unity with j ∈ [d] labeling e(j/d) (Definition 4.1). A set partition [λ] ⊢ [d] is a
(metric) noncrossing partition, if the convex hulls of the dth roots labeled by the
numbers in each block of [λ] form pairwise disjoint subspaces of C.

Definition 4.4 (Topological noncrossing partitions). Let X be a closed disk in
the complex plane, let S ⊂ ∂X be a subset of its boundary with d path compo-
nents and fix a bijective labeling of the components of S by the numbers in [d]
in the counterclockwise order they occur in the boundary of X. For every sub-
space U (typically a closed subsurface) with S ⊂ U ⊂ X we define a set partition
NCPart(U) where i and j are in the same block of NCPart(U) if and only if the
path components of S labeled i and j are in the same path component of U. A set
partition [λ] ⊢ [d] is a (topological) noncrossing partition if there exists a subspace
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U with S ⊂ U ⊂ X such that NCPart(U) = [λ]. Note that if we view the sub-
spaces of X containing S as a poset under inclusion, then the map to NCPartd is
weakly order-preserving. In other words, if S ⊂ U1 ⊂ U2 ⊂ X as subspaces, then
NCPart(U1) ≤ NCPart(U2) as set partitions.

The three definitions are, of course, equivalent.

Proposition 4.5 (Noncrossing partitions). The combinatorial, metric and topolog-
ical definitions of noncrossing partitions define the same collection of set partitions.

Proof. (C ⇔ M) The equivalence of the combinatorial and metric definitions is
classical [Kre72]. (M ⇒ T) Given X and S as in Definition 4.4, fix an identification
of X with closed unit disk D so that the path component of S labeled j contains
e(j/d) ∈ d

√
1. For each metric noncrossing partition [λ], the union of its convex

hulls (union S), viewed as a subspace U ⊂ X = D, shows that [λ] is a topological
noncrossing partition. If we need U to be a subsurface, simply replace the subspace
with a small closed neighborhood in D. (T⇒ C) Let [λ] be a topological noncrossing
partition in a disk X, let U be a subspace with NCPart(U) = [λ] and let i <
j < k < ℓ be numbers in [n] with i and k in the same block and j and ℓ in the
same block. If α : I → U is a path in U from the ith component of S to the kth

component of S, and β : I → U is a path in U from the jth component of S to the
ℓth component of S, then α and β intersect.2 Thus all four points are in the same
path component of U, the numbers are in the same block of NCPart(U) = [λ],
and [λ] is a combinatorial noncrossing partition. □

4.2. Branched rectangles. The topological noncrossing partitions of interest here
are induced by subspaces of planar branched covers of rectangles. This subsection
establishes our conventions for such spaces. We first specify a standard rectangle.

Definition 4.6 (Standard rectangle). The standard rectangle is Q = I + Ji ⊂ C
where both I and J are the standard interval [−1, 1]. The sides of Q touch the unit

circle at their midpoints 4
√
1 with i ∈ T , −1 ∈ L, −i ∈ B and 1 ∈ R, and these are

their representatives. The vertices of Q are {±(1± i)} = 4
√
−4. The breakpoint is

w = 1 + i and the basepoint is z = −(1 + i).

Similar conventions apply to the power map preimages of the standard rectangle.

Definition 4.7 (Standard branched rectangles). Let p(z) = zd be the power map
(Definition 2.4) and let Q is the standard rectangle (Definition 4.6). The standard
d-branched rectangle is P = p−1(Q). The d-fold covering map ∂p : ∂P → ∂Q
between their boundaries is used to partition the 4d open edges, or sides, S, into d
top sides ST , d left sides SL, d bottom sides SB , and d right sides SR. For example
ST = p−1(T ). The midpoints of the sides of P touch the unit circle at the 4d points
4d
√
1, and these are their standard representatives. More precisely, the top sides

are represented by the points d
√
i, the left sides by the points d

√
−1, the bottom

sides by the points d
√
−i and right sides are by the points d

√
1. Sides are indexed

by the indexing of their representatives (Definition 4.1). For example, Tm contains

e( 4m−3
4d ), the mth element of d

√
i = {e( 4m−3

4d ) | m ∈ [d]}. The basepoint preimage

2If not, then (s, t) 7→ (β(t)−α(s)) is a contractible map I2 → C∗ whose boundary cycle is sent

to a loop of winding number 1, contradiction. The winding number can be computed by assuming
X is a rectangle and α and β connect opposite corners. The map in this case sends the vertices

of I2 to the coordinate axes and its sides to paths in specific quadrants.
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Figure 12. A standard 3-branched rectangle with labeled cells.
The 3 large white dots are the indexed breakpoints wm→m+1 and
the 3 large black dots are the indexed basepoints zi.

between sides Lm and Bm is zm, and the breakpoint preimage between sides Rm

and Tm+1 is wm→m+1. See Figure 12.

The standard 4d-gon P roughly looks like a regular hyperbolic polygon, but more
precisely, the sides are portions of the curves rd cos(dθ) = ±1 (for the preimages
of the right and left sides) and rd sin(dθ) = ±1 (for the preimages of the top and
bottom sides). Nevertheless, we often treat P as though it was in the Poincaré
disk model with a hyperbolic metric. Arcs and convex hulls are drawn with this
hyperbolic approximation in mind. See Figure 12 for an example when d = 3.

The standard branched rectangle has side-based noncrossing partitions.

Definition 4.8 (Noncrossing partitions of sides). Let NCPartT
d be the (topolog-

ical) noncrossing partitions of the top sides ST in P, with NCPartL
d , NCPartB

d ,

and NCPartR
d defined similarly. There are canonical isomorphisms NCPartd

∼=
NCPartT

d
∼= NCPartL

d
∼= NCPartB

d
∼= NCPartR

d based on the indexing of the
sides, and we write [λ]T , [λ]L, [λ]B , [λ]R, for the image of a noncrossing partition
[λ] ∈ NCPartd in these other copies.

Since the identifications in Definition 4.8 are based on subscripting conventions,
they necessarily break certain symmetries.

Remark 4.9 (Broken symmetries). Iteratively rotating P through a counterclock-
wise angle of 2π/4d sends a subsurface defining [λ]T to a subsurface defining [λ]L,
then to a subsurface defining [λ]B , then to a subsurface defining [λ]R, then to a
subsurface defining [λ+]T . The plus indicates that the (combinatorial) noncrossing
partition [λ] ⊢ [d] stays the same until the last step, when [λ+] is [λ] with every
number increased by one (mod d). In Figure 12, for example, a component of a
subsurface containing T2 is sent to one containing L2, then B2, then R2, then T3.
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The map p(z) = zd lifts subsets of the sides of Q to subsets of the sides of P.

Definition 4.10 (Points in branched sides). Given subsets C ⊂ I and D ⊂ J ,
we define corresponding subsets of the sides of P using the map p(z) = zd. For
example, ST,C = p−1(CT ) =

⋃
m∈[d] CTm

where CTm
= p−1(CT ) ∩ Tm and CT is

given as in Definition 3.8. When C and D are finite, we index the points in the
sides of P by indicating the side in the first subscript and the point in the second
subscript. For example, we write tm,i for the point in CTm with p(tm,i) = ti ∈ CT ,
where fT (ti) = xi ∈ C. If |C| = k and |D| = l, then there are 2d(k+ l) lifted points
in the sides S, with |ST,C | = |SB,C | = dk and |SL,D| = |SR,D| = dl. We call this a
(k, l)d-configuration of points in the boundary of the d-branched rectangle P.

If we select a point in I and a point in J , these lift to a point in each side of P.

Definition 4.11 (Representative points). A point x ∈ I with C = {x} determines
a (1, 0)d-configuration of 2d points, one in each of the d top sides and d bottom
sides. In particular, there is tm,x ∈ Tm and bm,x ∈ Bm. Similarly, a point y ∈ J
with D = {y} determines a (0, 1)d-configuration of 2d points, one in each of the d
left sides and d right sides. In particular, there is ℓm,y ∈ Lm and rm,y ∈ Rm. The
combination of these two is a (1, 1)d-configuration with 4d points, one in each side.
In all three cases, we say these points represent the corresponding side.

4.3. Noncrossing matchings. A noncrossing matching is both a special type of
noncrossing partition on [2d] points and an encoding of a noncrossing partition on
[d] points. Both viewpoints can be illustrated on d-branched rectangles.

Definition 4.12 (Noncrossing matchings). A (combinatorial) noncrossing match-
ing [µ] is a noncrossing partition of the set [2d], necessarily of even size, where
every block has size 2. In other words, Shape([µ]) = 2d. Note that the numbers
in a block are forced to have opposite parity since they are separated by an even
number of ends of noncrossing arcs. In particular, a (metric) noncrossing matching

can be viewed as a noncrossing bijection between the d points in d
√
1 with even

labels and the d points in d
√
−1 with odd labels. A bijection between two sets is

sometimes called a matching, hence the name. Let NCMat2d denote the set of all
noncrossing matchings of [2d].

There is also a topological definition.

Definition 4.13 (Side matchings). The d-branched rectangle P contains 2d top
and bottom sides, T1, B1, T2, B2, . . . , Td, Bd in counterclockwise order, starting at
the first breakpoint wd→1, containing the 2d points 2d

√
1 as their midpoints. A

(topological noncrossing) top-bottom matching is a topological noncrossing parti-

tion of ST ∪SB where every block contains exactly 2 sides. Let NCMatTB
2d denote

the collection of all such top-bottom matchings. The bijection ST ∪SB → [2d] send-

ing Tm to 2m− 1 and Bm to 2m extends to a bijection NCMatTB
2d → NCMat2d.

Alternatively, a top-bottom matching can be viewed as a noncrossing matching of
the 2d points in a (1, 0)d-configuration (Definition 4.11). Similarly, P contains 2d
left and right sides, L1, R1, L2, R2, . . . , Ld, Rd in counterclockwise order, starting
at the first breakpoint wd→1. A (topological noncrossing) left-right matching is a
topological noncrossing partition of SL ∪ SR where every block contains exactly 2
sides. Let NCMatLR

2d denote the collection of all such left-right matchings. The
bijection SL∪SR → [2d] sending Lm to 2m−1 and Rm to 2m extends to a bijection
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Figure 13. The noncrossing left-right matching [µ]LR (upper
left), the noncrossing top partition [λ]T = 137|2|45|6|8|9 (upper
right), the noncrossing bottom partition [λ]B = 12|356|4|789 (lower
left), and the 2-coloring (lower right), all contain the same com-
binatorial information. The partition figures include the convex
hulls of representative points to make them easier to see.

NCMatLR
2d → NCMat2d. Alternatively, a left-right matching can be viewed as a

noncrossing matching of the 2d points in a (0, 1)d-configuration (Definition 4.11).
We write [µ]LR and [µ]TB for the left-right and top-bottom matchings that corre-
spond to [µ] ∈ NCMat2d.

There are bijections between NCMatLR
2d , NCPartT

d and NCPartB
d , and be-

tween NCMatTB
2d , NCPartL

d and NCPartR
d . We begin with an example.

Example 4.14. Let P be a standard 9-branched rectangle and let [µ]LR be a left-

right matching in NCMatLR
18 with blocks {L1, R2}, {L2, R1}, {L3, R6}, {L4, R4},

{L5, R3}, {L6, R5}, {L7, R9}, {L8, R7}, and {L9, R8}. The upper left corner of
Figure 13 shows the multiarc whose arcs are convex hulls of the representative
points in a (0, 1)9-configuration (e.g. the “hyperbolic” arc from ℓ1,y to r2,y). The
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NCPartT
d

NCPartd

NCPartB
d

KrewBT

Figure 14. Three bijections that do not form a commutative dia-
gram, since the composition of all three starting atNCPartd is the
Kreweras complement map Krew, a non-trivial order-reversing
automorphism.

complementary regions of P with these arcs removed can be 2-colored: a lighter sky
blue if it contains a top side and a darker sea blue if it contains a bottom side (lower
right). The sky blue subsurfaceUT contains ST and the corresponding (topological)

noncrossing partition of top sides is [λ]T = 137|2|45|6|8|9 ∈ NCPartT
9 (upper

right). The sea blue subsurfaceUB contains SB and the corresponding (topological)

noncrossing partition of bottom sides is [λ]B = 12|356|4|789 ∈ NCPartB
9 (lower

left). The convex hulls of representative points in each block (e.g. the “hyperbolic”
triangle connecting b3,x, b5,x, and b6,x), are also included. This process is also
reversible in the sense that the original left-right matching can be recovered from
either the top or the bottom noncrossing partition. Given [λ]T , for example, we
can define UT to be an ϵ-neighborhood of convex hulls of the representative points
in each block union the sides ST . The 9 arcs of ∂UT in the interior of P are a
multiarc that defines the left-right matching [µ]LR.

Arguing as in Example 4.14 establishes the following result.

Proposition 4.15 (Matchings and partitions). There are bijections

NCPartT
d ↔ NCMatLR

2d ↔ NCPartB
d

and
NCPartL

d ↔ NCMatTB
2d ↔ NCPartR

d .

The bijections between different types of noncrossing partitions are related to
the Kreweras complement map.

Definition 4.16 (Kreweras complement maps). A topological Kreweras comple-

ment is a bijection KrewXY : NCPartX
d → NCPartY

d from Proposition 4.15,
where X is T , L, B or R and Y = Xop is the opposite side B, R, T or L, re-
spectively. Combining a topological Kreweras complement map with the bijections
of Definition 4.8 produces the classical order-reversing Kreweras complement map
(see [Kre72]) Krew : NCPartd → NCPartd, or its inverse. The bottom-to-top
and right-to-left maps produce the Kreweras complement, and the top-to-bottom
and left-to-right maps produce its inverse. Figure 14 illustrates the process.

4.4. Noncrossing permutations. When noncrossing partitions are converted to
noncrossing permutations, the Kreweras map has an algebraic description.

Definition 4.17 (Noncrossing permutations). A set partition [λ] ⊢ [d] can be con-
verted into a permutation π ∈ Symd by turning each block of [λ] of size k into
a k-cycle in which the elements of the block are listed in increasing order. For
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example, if [λ] = 137|2|45|6|8|9, then π = Perm([λ]) = (1 3 7)(4 5) in Sym9.
This defines a map Perm : SetPartd ↪→ Symd which is injective because the
set partition can be reconstructed from its permutation image. When [λ] is a
noncrossing partition, we call π = Perm([λ]) a noncrossing permutation. Let
NCPermd denote the collection of noncrossing permutations in Symd. The restric-
tion Perm : NCPartd → NCPermd is a bijection as shown by Biane in [Bia97].
In the metric version of noncrossing partitions, the disjoint cycles of Perm([λ])
record the order in which vertices occur in the counterclockwise boundary cycle of
the convex hull of each block of [λ].

The bijection from NCPartd to NCPermd makes the latter into a partially
ordered set, and this has a useful interpretation which is purely algebraic.

Definition 4.18 (Absolute order). Let T be the set of all transpositions in the
symmetric group Symd and, for each σ ∈ Symd, define the absolute reflection
length ℓ(σ) to be the length of a minimal factorization of σ into elements of T .
Declaring σ ≤ τ if ℓ(σ) + ℓ(σ−1τ) = ℓ(τ) makes Symd into a partially ordered set
which happens to be a lattice. If we define δ to be the d-cycle (1 2 · · · d), then the
interval [1, δ] in Symd is the set NCPermd, so the set of noncrossing permutations
is partially ordered with the absolute order. One should think of the interval [1, δ] as
a union of geodesics from the identity to δ in the Cayley graph of Symd with respect
to the generating set T . Moreover, the map Perm : NCPartd → NCPermd is a
poset isomorphism.

Definition 4.19 (Noncrossing permutations of sides). Composing the identifica-
tions in Definition 4.8 with the function in Definition 4.17 produces new func-
tions Perm : NCPartX

d → NCPermd where X is T , L, B, or R. We write πX

when πX = Perm([λ]X) for some [λ]X ∈ NCPartX
d . Alternatively, let U be a

closed, possibly disconnected, subsurface of P with contractible components and
NCPart(U) = [λ]. The sides SX occur in the boundary U and the disjoint cycles
of πX record the counterclockwise ordering of the sides in the boundaries of each
component.

Definition 4.20 (Permutations and matchings). Let [µ] ⊢ [2d] be a noncrossing
matching. By Proposition 4.15, the left-right matching [µ]LR determines noncross-
ing partitions [λ]T and [λ]B . The corresponding noncrossing permutations, πT

and πB , are the top and bottom permutations associated with [µ]LR. Similarly,
the top-bottom matching [µ]TB determines noncrossing partitions [λ]L and [λ]R,
and the corresponding noncrossing permutations, πL and πR, are the left and right
permutations associated with [µ]TB .

There is a close algebraic connection between the two noncrossing permutations
associated with a noncrossing side-to-side matching.

Example 4.21. The noncrossing matching [µ]LR in Example 4.14 determines the
noncrossing partitions [λ]T = 137|2|45|6|8|9 and [λ]B = 12|356|4|789, which become
the noncrossing permutations πT = (1 3 7)(4 5) and πB = (1 2)(3 5 6)(7 8 9) in
Sym9. Note that the composition πT · πB = (1 2 · · · 9). This can be understood
geometrically. The permutation πB is applied first. It identifies 6 with the side
B6 which is connected to B3 in the counterclockwise order in the boundary of the
block {3, 5, 6} and this side is identified with the number 3. The permutation πT

identifies 3 with the side T3 which is connected to T7 in the counterclockwise order
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in the boundary of the block {1, 3, 7} and this is identified with the number 7. This
can be visualized as a path from B6 to B3 to T3 (passing through L3) to T7. This
is nearly a full circuit around the arc from R6 to L3, from the bottom side B6

adjacent to R6 to the top side T7, also adjacent to R6. Between the start and end
sides there is exactly one vertex where the indexing changes (Remark 4.9), so 6
goes to 7 in the composition. Similarly, i goes to i+ 1 mod 9 for every i ∈ [9].

Arguing as in Example 4.21 establishes the following.

Proposition 4.22 (Factors). Let [µ] ⊢ [2d] be a noncrossing matching and let δ be
the d-cycle (1 2 · · · d). The top and bottom permutations associated to the left-right
matching [µ]LR satisfy the equation πT ·πB = δ, and the left and right permutations
associated to the top-bottom matching [µ]TB satisfy the equation πL · πR = δ.

Proposition 4.22 gives an algebraic description of the Kreweras complement map.

Remark 4.23 (Kreweras complements). Proposition 4.22 shows, for example, that

the permutation version of KrewBT sends πB to πT = δ · (πB)−1, its left com-
plement with respect to δ = (1 2 · · · d). Similarly, the permutation version of

KrewTB sends πT to πB = (πT )−1 · δ, its right complement with respect to δ.

5. Geometric Combinatorics

As we transition from looking at a single polynomial (Part 1) to looking at spaces
of polynomials (Part 2), we introduce a way of sending each monic polynomial
to a point in a product of order complexes. After turning the combinatorics of
the regular complex Pp into two chains in noncrossing partition lattices (5.1), we
combine this with the metric of the critical value complexQ′

p to create theGeoCom
map from a polynomial space to a product of two simplicial complexes (5.2).

5.1. Chains of side partitions. The combinatorial structure of the regular point
complex Pp encodes two chains of noncrossing partitions. We begin by listing our
standing assumptions.

Remark 5.1 (Standing assumptions). In this section p : C → C is a monic complex
polynomial of degree d with fixed coordinate rectangle ⊃ cvl(p). The critical
value complex Q′

p, regular value complex Qp and regular point complex Pp are
as defined in Section 3. We assume that Q′

p is (k′, l′)-subdivided and Qp is (k, l)-
subdivided, with k = k′ + 1 and l = l′ + 1. All illustrations in this section use the
degree 5 polynomial p of Example 2.3.

Since we are only interested in its combinatorial structure, we redraw the regular
point complex Pp as a cell structure on a standard branched rectangle. We do this
using a standard labeling that comes from the fact that p is monic.

Definition 5.2 (Labeling Pp). Recall that cell structure of Q′
p depends on the

choice of rectangle (Remark 3.10), but once that choice has been made, the cell
structure of Qp (and Pp) is unaffected by the size of the larger rectangle on which
Q is built (Remark 3.24). Thus we are free to assume that interval J includes
0. Let γ be the portion of the x-axis that starts in the right side R of Qp and
extends to the right. Because p is monic, the preimage of this regular ray lifts to
d topological rays that start in the right sides of Pp and end up asymptotic to the
rays in the dth root of unity directions. The side Rd = R0 in Pp is the one whose
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Figure 15. The “regular” map p : Pp → Qp for the polynomial p
of Example 2.3 is shown in standardized form. The regular value
complex Qp of Figure 8 is shown here as a standard rectangle with
an equally spaced (5, 5)-subdivision. Similarly, the regular point
complex Pp of Figure 11 is shown here in a 20-sided standard 5-
branched rectangle.

ray ends up asymptotic to the positive x-axis, and the remaining sides and vertices
are indexed so that its boundary labels look like a standard d-branched rectangle
(Definition 4.7). See Figure 11.

Definition 5.3 (Standard representations). A standard representation of Qp is
one where the small rectangles in its (k, l)-subdivision are the same size, and a
standard representation of Pp is one where its cell structure is drawn on the 4d-gon
that is the standard d-branched rectangle (Definition 4.7), according to the monic
polynomial labels (Definition 5.2).

Figure 15 shows standard representations for our running example. The rep-
resentations of Definition 5.3 are possible because the regular point complex Pp

is always a nonsingular disk diagram. This would not always be possible for the
critical point complex P′

p since it is singular when the critical value complex Q′
p

has critical values in its boundary (Corollary 3.18). The subdivision of Qp can
be viewed as a horizontal subdivision and a vertical subdivision that have been
superimposed.

Definition 5.4 (Arcs). The regular value complex Qp = Ip×Jp is a cell structure
on the rectangle Q = I× J. As intermediate steps we have Qℜ(p) = Ip × J and let
Qℑ(p) = I× Jp, which have a (k, 0)-subdivision and a (0, l)-subdivision. Let αi be
the edge in Qℜ(p) from bi in the bottom side to ti in the top side, with i ∈ [k]. Let
βj be the edge in Qℑ(p) from ℓj in the left side to rj in the right side, with j ∈ [l].
These persist as subdivided arcs in the (k, l)-subdivided Qp and we call them the
vertical arcs αi and the horizontal arcs βj .

For our standard example, Figure 16 shows the structures associated with a
single vertical arc. Here are the definitions to make this precise.

Definition 5.5 (Subsurfaces of Pp and Qp). The closed complementary regions
(as in Definition 2.18) of the vertical arc αi from bi to ti are the left subsurface VL

i



36 MICHAEL DOUGHERTY AND JON MCCAMMOND

R1

T1

L1

B1

R2

T2L2

B2

R3

T3

L3

B3

R4

T4

L4 B4

R5

T5

L5

B5

−→

t3

b3

α3

Figure 16. The vertical arc α3 from b3 to t3 in the range divides
the regular value complex Qp into an orange left subsurface VL

3

and a red right subsurface VR
3 . Their preimages divide the regular

point complex Pp into an orange “left” subsurface UL
3 = p−1(VL

3 )
and a red “right” subsurface UR

3 = p−1(VR
3 ) separated by the

multiarc α̃3 = p−1(α3). The corresponding topological noncrossing

partitions are NCPartL(UL
3 ) = 1|245|3 of the 5 left sides of Pp,

and NCPartR(UR
3 ) = 15|23|4 of the 5 right sides of Pp.

and the right subsurface VR
i . The complementary regions of a horizontal regular

arc βj from ℓj to rj are the top subsurface VT
j and the bottom subsurface VB

j .
Collectively these the 2(k + l) side subsurfaces of Qp. Their preimages are the left
subsurface UL

i = p−1(VL
i ), the right subsurface UR

i = p−1(VR
i ), the top subsurface

UT
j = p−1(VT

j ), and the bottom subsurface UB
j = p−1(VB

j ). These are the 2(k+ l)
side subsurfaces of Pp. See Table 1.

As in Example 4.14, these subsurfaces produce noncrossing partitions.

Definition 5.6 (Side partitions and side matchings). For each vertical arc αi from
bi to ti, we have L ⊂ VL

i ⊂ Qp, so SL ⊂ UL
i ⊂ Pp. The ith left partition

[λi]
L = NCPartL(UL

i ) (Definition 4.8) is the corresponding noncrossing partition
of the left sides of Pp. The preimage α̃i = p−1(αi) of αi is a multiarc, a collection
of d noncrossing arcs that connect the d top sides and the d bottom sides. The
mulitarc α̃i defines a top-bottom matching [µi]

TB and forms the common boundary
between the two subsurfaces UL

i and UR
i . Similarly, the ith right partition is

[λi]
R = NCPartR(UR

i ). And for any horizontal arc βj , the jth top partition is

[λj ]
T = NCPartT (UT

j ) and the jth bottom partition is [λj ]
B = NCPartB(UB

j ).

The preimage β̃j = p−1(βj) of βj is a multiarc, a collection of d noncrossing arcs

that connect the d left sides and the d right sides. The multiarc β̃j defines a left-
right matching [µj ]

LR and form the common boundary between the two subsurfaces
UT

j and UB
j . These are the side partitions and side matchings of Pp.

Nested subsurfaces in Qp lift to nested subsurfaces in Pp and comparable non-
crossing partitions. For our standard example Figure 17 shows the structures as-
sociated with the vertical subdivisions of Qp, and Figure 18 shows the structures
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name partition permutation in Pp in Qp

TB matching [µi]
TB ∈ NCMatTB

2d — α̃i αi

LR matching [µj ]
LR ∈ NCMatLR

2d — β̃j βj

top partition [λj ]
T ∈ NCPartT

d πT
j UT

j VT
j

left partition [λi]
L ∈ NCPartL

d πL
i UL

i VL
i

bottom partition [λj ]
B ∈ NCPartB

d πB
j UB

j VB
j

right partition [λi]
R ∈ NCPartR

d πR
i UR

i VR
i

Table 1. Notations for the side matchings and side partitions of
the regular point complex Pp (Definition 5.6).

Figure 17. The bottom row shows the left and right subsurfaces
VL

i ,V
R
i ⊂ Qp separated by the vertical arcs αi. The second row

shows the corresponding left and right subsurfaces UL
i ,U

R
i ⊂ Pp

separated by the 5 arcs of the multi arc α̃i which defines the
top-bottom matching [µi]

TB . The third row shows the chain
1|2|3|4|5 < 1|2|3|45 < 1|245|3 < 1|2345 < 12345 of left noncrossing

partitions [λi]
L ∈ NCPartL

5 . And the top row shows the chain
12345 > 1235|4 > 15|23|4 > 15|2|3|4 > 1|2|3|4|5 of right noncross-

ing partitions [λi]
R ∈ NCPartR

5 .
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associated with the horizontal subdivisions of Qp. The side chains are strictly
monotonic because of the way in which the cell complexes for p are defined.

Lemma 5.7 (Distinct). Nested side surfaces of Pp have distinct partitions.

Proof. We prove this for nested left subsurfaces. For any i1, i2 ∈ [k] with i1 < i2,
we have UL

i1
⊂ UL

i2
and [λi1 ]

L ≤ [λi2 ]
L (Definition 4.4). We know that there is

at least one critical value of p in VL
i2
\VL

i1
by construction. As a consequence the

subsurfaceUL
i1
has more connected components thanUL

i2
(Proposition 2.24) and the

noncrossing permutation Perm([λi1 ]
L) has more disjoint cycles than Perm([λi2 ]

L)
(Definition 4.12), so the inequality is strict. □

Definition 5.8 (Side chains of Pp). The k vertical arcs αi from bi to ti define
nested left subsurfaces L ⊂ VL

1 ⊂ VL
2 ⊂ · · · ⊂ VL

k ⊂ Qp which lift to SL ⊂
UL

1 ⊂ UL
2 ⊂ · · · ⊂ UL

k ⊂ Pp which in turn define an increasing chain [λ1]
L <

[λ2]
L < · · · < [λk]

L of left noncrossing partitions in NCPartL
d (Definition 4.4 and

Lemma 5.7). In the other direction, the nested right subsurfaces Qp ⊃ VR
1 ⊃

VR
2 ⊃ · · · ⊃ VR

k ⊃ R lift to Pp ⊃ UR
1 ⊃ UR

2 ⊃ · · · ⊃ UR
k ⊃ SR which define

a decreasing chain [λ1]
R > [λ2]

R > · · · > [λk]
R of right noncrossing partitions in

NCPartR
d . Similarly, the l horizontal arcs βj from ℓj to rj define an increasing

chain [λ1]
B < [λ2]

B < · · · < [λl]
B of bottom noncrossing partitions in NCPartB

d ,
and a decreasing chain [λ1]

T > [λ2]
T > · · · > [λj ]

T of top noncrossing partitions

in NCPartT
d . These are the 4 side chains of Pp. Since the right and left chains

are related by the topological Kreweras complement map (Definition 4.16), they
contain the same information, and the same is true for the top and bottom chains.
We focus on the increasing left and bottom chains.

In our example, the side chains start at the discrete partition and end at the
indiscrete partition because ∂Q′

p is regular.

Lemma 5.9 (Discrete and indiscrete). The side chains of Pp start at the discrete
partition if and only if the corresponding start side of Q′

p is regular, and they end
at the indiscrete partition if and only if the corresponding end side of Q′

p is regular.

Proof. It is sufficient to prove this for the start of the left chain. By the same
reasoning as in the proof of Lemma 5.7, the first partition [λ1]

L is discrete if and
only if the first column of Qp is regular, which is true if and only if the left side of
Q′

p = has no critical values. □

Remark 5.10 (Real and imaginary Morse functions). The left chain of Pp essen-
tially encodes the changes in the topology of the preimages of lower intervals for
the real Morse function ℜ◦ p : C → R, but with slight modifications because of the
rectangle = [x′

ℓ, x
′
r] × [y′b, y

′
t] surrounding the critical values. The critical values

of this Morse function are the points C ′ = {x′
1, . . . , x

′
k} with the possible addition

of x′
ℓ and x′

r, if there is a critical value in the left and/or right side of . The
values xi used to define Ip are representatives of the equivalence classes of regular
levels of this Morse function, with possible duplication at the extremes if there are
no critical values in the left and/or right side of . To see the connection with
Morse level sets, note that the regular point xi used to define the vertical arc αi

and the left subsurface VL
i , also defines the left half-space HL

i with the vertical
line {xi} × R as its boundary. And since each HL

i \VL
i is regular, the preimages
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Figure 18. The last column shows the top and bottom subsur-
faces VT

j ,V
B
j ⊂ Qp separated by the horizontal arcs βj . The sec-

ond column shows the corresponding top and bottom subsurfaces

UT
j ,U

B
j ⊂ Pp separated by the 5 arcs of the multiarc β̃j which

defines the left-right matching [µj ]
LR. The first column shows

the chain 1|2|3|4|515|2|3|4 < 145|2|3 < 145|23 < 12345 of bottom

noncrossing partitions [λj ]
B ∈ NCPartB

5 . And the third column
shows the chain 1|2|3|4|5 < 1|24|3|5 < 1|234|5 < 1|2345 < 12345

of top noncrossing partitions [λj ]
T ∈ NCPartT

5 .

under p have the same homotopy type. In particular, the portion of the domain
shown in the diagrams in the second row of Figure 17 contains all of the interesting
information. Similar comments hold for the bottom chain of Pp and the imaginary
Morse function ℑ ◦ p : C → R.

5.2. The geometric combinatorics map. We now assemble all of the geometric
combinatorial information about monic polynomials with critical values in a fixed
closed rectangle into a single continuous map from a polynomial space to a
bisimplicial cell complex. The range is built out of order complexes.

Definition 5.11 (Order complex). Let |NCPartd|∆ be the ordered simplicial
complex that is the order complex of NCPartd. Its vertices are labeled by the
elements of NCPartd and it has an ordered k-simplex on vertices [λ1], [λ2], . . . , [λk]
for every chain [λ1] < [λ2] < · · · < [λk] in NCPartd. A point in |NCPartd|∆ is a
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formal sum
∑

i∈[k] wti · [λi], where the [λi] label the vertices of an ordered simplex

in |NCPartd|∆ and the real numbers wti ∈ (0, 1) with
∑

i∈[k] wti = 1 are the

barycentric coordinates of a point in the interior of that simplex.

Definition 5.12 (Geometric combinatorics map). Let Polymc
d ( ) be the set of

monic centered complex polynomials of degree d with cvl(p) in a fixed coordinate
rectangle . There is a well-defined geometric combinatorics map

GeoCom : Polymc
d ( ) → |NCPartL

d |∆ × |NCPartB
d |∆

defined by sending a polynomial p to

GeoCom(p) =

∑
i∈[k]

wtIi · [λi]
L,

∑
j∈[l]

wtJj · [λj ]
B

 .

The left side partitions [λi]
L of Definition 5.8 label the vertices of a simplex in

the order complex |NCPartL
d |∆, and the numbers (wtI1, . . . ,wtIk) = Bary(I′p) of

Definition 3.2 are the barycentric coordinates of a point in the interior of that
simplex (Definition 5.11). Similarly, the bottom side partitions [λi]

B label the

vertices of a simplex in the order complex |NCPartB
d |∆ and the relative widths

(wtJ1 , . . . ,wtJl ) = Bary(J′
p) are the barycentric coordinates of a point in in the

interior of that simplex. The map Perm : NCPartd → NCPermd (Definition 4.17)
sends side partitions such as [λi]

L to side permutations πL
i = Perm([λi]

L). See
Table 1 on page 37. This means that |NCPartd|∆ = |NCPermd|∆ with relabeled
vertices. There is an alternative version of the geometric combinatorics map

GeoCom : Polymc
d ( ) → |NCPermL

d |∆ × |NCPermB
d |∆

using noncrossing permutations, and defined by the formula

GeoCom(p) =

∑
i∈[k]

wtIi · (πL
i ),

∑
j∈[l]

wtJj · (πB
j )

 .

In both formulations, the simplices are determined by the combinatorial structure
of the regular point complex Pp, and the points in these simplices are selected using
the metric structure of the critical value complex Q′

p.
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x

y

z

I12|3

x

y

z

I12|3

Figure 19. On the left, the subspace I12|3 forms a rectangular
subspace with side lengths of

√
2 and 1 inside the 3-cube I3. On

the right, the stratum I12|3 is the same rectangle, but with the long

diagonal I123 = I123 removed.

Part 2. Spaces of Polynomials

In this part the focus shifts from a single polynomial to spaces of polynomials.
The Lyashko–Looijenga map, or LL map, is a stratified covering map from a poly-
nomial space to a multiset space. Its structure makes it possible to lift certain types
of multiset paths (a continuously varying families of multisets) to a polynomial path
(a continuously varying family of polynomials). And lifted polynomial paths lead
to polynomial homotopies that continuously modify spaces of polynomials. The
goal of Part 2 is to prove Theorems E, F and G using these polynomial homotopies.

Part 2 is structured as follows. Section 6 discusses the Mult map as a stratified
covering Mult : Xn → Multn(X). Section 7 discusses the Lyashko–Looijenga
map, or LL map, as a stratified covering LL : Polymt

d (X) → Multn(X). Section 8
shows that paths inMultn(X) with weakly increasing shapes can be uniquely lifted
to Polymt

d (X) through the LL map, using path lifting to Xn through the Mult
map as a model. Section 9 turns these unique polynomial lifts into polynomial
homotopies, and Section 10 uses these to establish relationships between spaces
of polynomials, including homeomorphisms, compactifications, deformations and
quotients.

6. Products and Multisets

This section describes stratifications of the product space Xn and the multi-
set space Multn(X) that turn the Mult map into a stratified covering. After
discussing product strata (6.1) we discuss multiset strata (6.2).

6.1. Product strata. The horizontal map SetPart : Xn → SetPart[n] in Fig-
ure 3 on page 11 subdivides Xn into strata we call X[λ] and into subspaces we call

X[λ]. We begin with an example and then define the notation.

Example 6.1 (Cubes). Let I = [0, 1], or more generally let I = [xℓ, xr] be an

interval of length s. The subspace I12|3 inside the 3-cube I3 is an (
√
2)s×s rectangle

containing the long diagonal subspace I123. The stratum I12|3 is the same rectangle
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with this long diagonal removed. Note that the closure of the stratum I12|3 is the

subspace I12|3. The stratum I12|3 is homeomorphic but not isometric to Conf2(I),
the space of two distinct unlabeled points in I. See Figure 19. More generally,
In is an n-dimensional cube of side length s. For each set partition [λ] ⊢ [n] with
k blocks of size a1, . . . , ak, the subspace I[λ] is a product of k line segments with
lengths (

√
a1)s, . . . , (

√
ak)s. There is a unique minimal simplicial cell structure on

In that contains all of these subspaces I[λ] as subcomplexes.

Definition 6.2 (Product strata). Let X[λ] = {x ∈ Xn | SetPart(x) = [λ]} for
each [λ] ∈ SetPartn. These are the strata of Xn, and Xn is a disjoint union of
these nonempty subspaces (Definition 1.7). The indiscrete stratum X[n1], where all
coordinates are equal, is the long thin diagonal of Xn. It is a topological diagonal
copy of X with its metric dilated by a factor of

√
n. The discrete stratum X[1n] is

Confn(X), the configuration space of all collections of n distinct labeled points.

In addition to the strata X[λ], we also define a different, overlapping collection of

subspaces X[λ], also indexed by set partitions, whose structure is easier to describe.

Definition 6.3 (Product subspaces). For a set partition [λ] ⊢ [n] let X[λ] be the
collection of points x where coordinates belonging to the same block of [λ] are
required to be equal. Unlike the definition of X[λ], we do not require that distinct

blocks have distinct coordinate values. For example, X13|2|4 = {(a, b, a, c) ∈ X4}
while X13|2|4 = {(a, b, a, c) ∈ X4 | a, b, c distinct}. Since an n-tuple x is in X[λ] if

and only if Shape(x) ≥ [λ], X[λ] is a disjoint union of strata:

X[λ] =
⊔

[µ]≥[λ]

X[µ].

The rectangular boxes in the n-cube (Example 6.1) illustrate the general prop-
erties of product subspaces and their strata. Let [λ] ⊢ [n] be a set partition with
k blocks. We show that the subspace X[λ] is a rescaled version of Xk (Propo-
sition 6.6), the stratum X[λ] is a rescaled version of Confk(X) (Proposition 6.7),

and the topological closure of X[λ] is X
[λ] (Proposition 6.8). The proofs use natural

maps between set partitions and indexing sets.

Definition 6.4 (Set partition maps). Let [λ] ⊢ [n] be a set partition with k blocks
and let λ = λa1

1 · · ·λaℓ

ℓ be its shape. There are canonical maps [n] → [λ] → [ℓ]. The
first sends i ∈ [n] to the block containing i in [λ], The second sends a block of [λ]
of size λj to j ∈ [ℓ]. If we pick a bijection [λ] → [k] fixing an ordering of the blocks,
we get maps [n] → [k] → [ℓ] between standard sets of integers. Note that functions
to and from [λ] are technically functions to and from the set of blocks of [λ].

Remark 6.5 (Points as functions). In the language of Remark 1.8, the points
in X [λ] bijectively correspond to functions [λ] → X, whereas the points in X[λ]

correspond to the injective functions [λ] ↪→ X. A “point” [n] → X in X[λ] factors
through the set partition map [n] → [λ] (Definition 6.4) to yield a “point” [λ] → X,
and composition with this set partition map reverses the process. If [λ] has k
blocks and we fix a bijection [k] → [λ] ordering the blocks of [λ], then composition
establishes an additional bijection, in fact a homeomorphism, between “points” in
X[λ] and “points” in Xk.
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[0 3] [1 2]

[2 1]

[3 0]

Figure 20. A standard 3-orthoscheme Mult3(I). The vertices
are multisets of the form xaℓ

ℓ xar
r with aℓ + ar = 3, so we label

them using the shorthand [aℓ ar]. The spine of the orthoscheme is
indicated by the thick path from [0 3] to [1 2] to [2 1] to [3 0].

Proposition 6.6 (Subspace metrics). Let [λ] ⊢ [n] be a set partition with k blocks.
Ordering of the blocks of [λ] produces a homeomorphism between X[λ] ⊂ Xn and
Xk. Moreover, this becomes an isometry by rescaling the ith coordinate of Xk by√
j, where j is the size of the corresponding block in [λ].

Proof. Pick a bijection [k] → [λ] ordering the blocks of [λ] and define a bijection
between Xk and X[λ] as described in Remark 6.5. This function is continuous
with a continuous inverse. Moreover, when restricted to a single coordinate of Xk

and the corresponding block of coordinates in X[λ], this is the long thin diagonal
embedding of Definition 6.2, which accounts for the stretch factors. □

Proposition 6.7 (Stratum metrics). If [λ] ⊢ [n] is a set partition with k blocks,
then the stratum X[λ] ⊂ Xn is homeomorphic to Confk(X). Moreover, this

homeomorphism can be promoted to an isometry by rescaling the ith coordinate
of Confk(X) by

√
j, where j is the size of the corresponding block in [λ].

Proof. The map in Proposition 6.6 sends Confk(X) to X[λ]. □

Proposition 6.8 (Stratum closures). The closure of Confn(X) is Xn, and for
each set partition [λ], the closure of the stratum X[λ] is the subspace X[λ].

Proof. For the types of spaces considered here (Remark 1.3), it is easy to see that
every point in Xn is a limit of points where the coordinates are distinct. Thus the
closure of Confn(X) is Xn and, by Proposition 6.6, the closure of X[λ] contains all

of X[λ]. Conversely, the closure of X[λ] is contained in X[λ] since any convergent
sequence of points where specific coordinates are always equal has a limit where
those coordinates remain equal. □

6.2. Multiset strata. The horizontal map Shape : Multn(X) → IntPartn in
Figure 3 on page 11 subdivides Multn(X) into strata we call Multλ(X) and into

subspaces we call Multλ(X). The special case where X is the interval I = [xℓ, xr]
is important in Part 3.

Definition 6.9 (Orthoschemes). The cell structure on In of Example 6.1 has
n! top-dimensional simplices, it admits a cellular action by Symn via permuting
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distinct arbitrary

labeled Confn(X) Xn

unlabeled Setn(X) Multn(X)

Set Mult

Figure 21. Configuration spaces with points that are distinct
and/or labeled. The horizontal maps are inclusions and the verti-
cal maps are quotients. The one on the left is a covering map.

coordinates, and the orbifold quotient Multn(I) = In/Symn can be identified
with a single closed n-dimensional simplex. Since this simplex is the convex hull
of n pairwise-orthogonal line segments with equal length, it is called a standard
n-orthoscheme of side length s. This path of pairwise-orthogonal line segments
through the vertex set is its spine. The closed cells of a standard n-orthoscheme
are non-standard orthoschemes with a spine of pairwise-orthogonal line segments
of length (

√
a1)s, . . . , (

√
ak)s and a1 + · · ·+ ak ≤ n. See Figure 20 for an example

and see [BM10] and [DMW20] for more on orthoschemes.

Definition 6.10 (Multiset strata). For each λ ⊢ n in IntPartn, let Multλ(X) =
{M ∈ Multn(X) | Shape(M) = λ}. These are the strata of Multn(X), and
Multn(X) is a disjoint union of these nonempty subspaces. The indiscrete stratum
Mult[1n] is the isometric image of the long thin diagonal in Xn sent to Multn(X).
The discrete stratum is Mult1n(X) is Setn(X), the collection of n distinct unla-
beled points in X, also known as the unlabeled configuration space UConfn(X)).
The symmetric group acts freely on Confn(X), Setn(X) is the quotient space
Confn(X)/Symn, and the map Set : Confn(X) → Setn(X) which sends the n-
tuple x = (x1, . . . , xn) to the n-element set Set(x) = {x1, . . . , xn} is an n!-sheeted
covering map. See Figure 21.

Definition 6.11 (Multiset subspaces). Next let Multλ(X) = {M ∈ Multn(X) |
Shape(M) ≥ λ}. We call these the subspaces of Multn(X) even though their
structure is much more complicated than it is in the product case. As before each
subspace Multλ(X) is a disjoint union of strata:

Multλ(X) =
⊔
µ≥λ

Multµ(X).

It is not too hard to see that for any set partition [λ] with shape λ = Shape([λ]),
the restricted map Mult : X[λ] → Multλ(X) is a covering map. This is because
small changes to the coordinates of an n-tuple in the domain, with equal coordinates
staying equal, correspond to small changes to the elements of the underlying set
S = Set(M) without changing their multiplicities. Although identifying the degree
of the cover is, strictly speaking, unnecessary, the answer is straightforward and we
have not seen it in the literature, so we pause to review the relevant combinatorics.
We begin with a concrete example.

Example 6.12 (Preimages and symmetries). Let a, b, c, d and e be distinct points
in X and let x = (a, b, a, c, d, c, e) be a 7-tuple in X7 with multiset M = a2b1c2d1e1,
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set partition [λ] = 13|2|46|5|7 and shape λ = 2213 as in Example 1.1. Note that
the set partition [λ] and the multiset M do not uniquely determine x. The set
partition determines the blocks of equal coordinates, the multiset determines the
set of coordinates to be assigned, and coordinate multiplicities must match the block
sizes, but any assignment sending a and c to blocks 13 and 46, and b, d and e to
blocks 2, 5 and 7 will work. The possible choices arise from the |Symλ| = 2! ·3! = 12
symmetries of the shape λ. Next, the set Mult−1(M) ⊂ X7 contains

(
n
λ

)
=(

7
2,1,2,1,1

)
= 1260 7-tuples, since this multinomial coefficient counts the number of

rearrangements of two a’s, one b, two c’s, one d and one e. Finally, since the map
from Mult−1(M) to set partitions of shape λ is uniformly a 12-to-1 map, there are

1
|Symλ|

(
n
λ

)
= 1260

12 = 105 distinct set partitions with shape λ = 2213.

Definition 6.13 (Symmetries of a shape). Let λ = λa1
1 λa2

2 · · ·λaℓ

ℓ be an integer
partition of n of length k and let a = (a1, . . . , aℓ) be the exponents of λ. The
symmetry group of λ is a subgroup of Symk. When the parts of λ are viewed as
distinguishable, the group Symλ is the group of rearrangements of its k distin-
guished parts that maintain their weakly decreasing order. Concretely, the group

is Symλ = Syma =
∏ℓ

i=1 Symai
and it has size |Symλ| = a! =

∏ℓ
i=1 ai!. We also

write
(
n
λ

)
to denote the multinomial coefficient

(
λ

a1,...,al

)
.

Arguing as in Example 6.12 establishes the following three results.

Proposition 6.14 (Tuples with fixed multiset). For any M ∈ Multn(X) with
Shape(M) = λ, there are

(
n
λ

)
n-tuples x ∈ Xn with Mult(x) = M .

Proposition 6.15 (Tuples with fixed multiset and set partition). Given a mul-
tiset M ∈ Multn(X) and a set partition [λ] ⊢ [n] with a common shape λ =
Shape(M) = Shape([λ]), there are |Symλ| n-tuples x ∈ Xn with Mult(x) = M
and SetPart(x) = [λ].

Proposition 6.16 (Set partitions with fixed shape). For any integer partition
λ ⊢ n, there are 1

|Symλ|
(
n
λ

)
set partitions [λ] ⊢ [n] with Shape([λ]) = λ.

Proof. Since the horizontal maps of Figure 3 are onto for any X considered here,
let M ∈ Multn(X) be a multiset of shape λ. By Proposition 6.14 there are

(
n
λ

)
n-tuples in Xn with multiset M and by Proposition 6.15 each set partition of shape
λ accounts for |Symλ| of these tuples. The quotient of these two values counts the
number of set partitions of shape λ. □

With these counts, we can clarify the structure of the stratum Multλ. We start
with a concrete example stated in the language of intermediate covers.

Example 6.17 (Stratum covers). The stratum X13|2|46|5|7 in X7 is homeomor-
phic to Conf5(X), but the corresponding stratum Mult2213 in Mult7(X) is not
homeomorphic to Set7(X). To see this, note that each element of Set7(X) has 7!
preimages in Conf7(X), while each element of Mult2213(X) has only |Sym2213 | =
2!3! = 12 preimages in X7 (Proposition 6.15). Instead, Mult2213(X) is homeomor-
phic to the intermediate cover Set2,3(X), which is a

(
5
2,3

)
= 10 sheeted cover of

Set5(X). And Conf5(X) is a 2!3! = 12 sheeted cover of Set2,3(X). See Figure 22.

As Example 6.17 shows, the multiset strata Multλ(X) are, in general, interme-
diate covers between Confk(X) and Setk(X).
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X13|2|46|5|7 Conf5(X) X[λ] Confk(X)

Mult2213(X) Set2,3(X) Multλ(X) Seta(X)

Set5(X) Setk(X)

∼

2!3! 2!3!

∼

a! a!

∼

( 5
2,3)

∼

(ka)

Figure 22. The stratum Multλ(X) in Multn(X) is homeomor-
phic to an intermediate cover of Setk(X), where k = len(λ).

Definition 6.18 (Intermediate covers). Let a = (a1, · · · , aℓ) be a tuple of positive
integers with sum k. The intermediate cover Seta(X) is the space of subsets ofX of
size k, with elements labeled so that there are exactly ai points with label i for each
i ∈ [ℓ]. The map that forgets the label is a covering map Seta(X) → Setk(X)

of degree
(
k
a

)
=

(
k

a1 ··· aℓ

)
. If f : [k] → [ℓ] is a function with the property that

|f−1(i)| = ai for all i ∈ [ℓ], then f induces a map Confk(X) → Seta(X) which
labels coordinates by their image under f , and this is an a!-sheeted covering since
permutations within preimages do not change the result.

This gives us a fairly precise description of theMultmap as a stratified covering.

Theorem 6.19 (Stratified covering map). The Mult map is a stratified cov-
ering map. Concretely, if [λ] ⊢ [n] is a set partition of shape λ = λa1

1 · · ·λaℓ

ℓ

with len(λ) = k and a = (a1, . . . , aℓ) are the exponents of λ, then the stratum
X[λ] is homeomorphic to Confk(X), the stratum Multλ(X) is homeomorphic to
the intermediate cover Seta(X), and the map Mult restricts to a covering map
X[λ] ↠ Multλ(X) of degree |Symλ| = a!.

Proof. There is a natural homeomorphism fromMultλ(X) to Seta(X) which sends
a multiset of shape λ to its underlying set of size k, where each element of the set is
labeled by its multiplicity in the multiset. Meanwhile, we know by Proposition 6.7
that X[λ] is homeomorphic to Confk(X) once we fix a bijection [k] → [λ]. Finally,
if we use the same bijection and the map [k] → [λ] → [ℓ] to construct a covering
map Confk(X) → Seta(X) as in Example 6.17, then the homeomorphism and the
covers form the commuting square in Figure 22. □

Corollary 6.20. The map Mult : Xn → Multn(X) is locally onto.

Proof. Fix x ∈ Xn with multiset M = Mult(x), set partition [λ] = SetPart(x),
and shape λ = Shape(x). The fact that X[λ] → Multλ(X) is a covering map
(Theorem 6.19) is sufficient to show that the image of a neighborhood of x ∈ X[λ]

contains a neighborhood of M in Multλ(X). For the other strata near x and M
we note that a small neighborhood of x ∈ X[λ] contains points in X[µ] if and only
if [µ] ≤ [λ] in SetPartn and a small neighborhood of M ∈ Multλ(X) contains
points in Multµ(X) if and only if µ ≤ λ in IntPartn. Since the set partitions
below [λ] map onto the integer partitions below λ, the image of this neighborhood
contains multisets inMultµ(X) nearM for every µ ≤ λ. In particular, the portions
of every stratum of Multn(X) with M in the boundary are covered by a portion
of a stratum in Xn with x in its boundary. □
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Cn Cd Cn

Polymc
d Polym

d Polym
n

Polymt
d Multn

LL−classic

Aff cvl

LL

Figure 23. The classical Lyashko–Looijenga map is a map from
Cn to Cn with n = d− 1. It can also be formulated as a map LL
from Polymt

d to Multn.

7. Critical Values and Polynomials

This section describes a stratification of monic centered polynomials that turns
the Lyashko–Looijenga map into a stratified covering map. After introducing our
version of the LL map (7.1) we discuss polynomial strata (7.2).

7.1. The LL map. While the classical LL map is from Cn to Cn, the version
used here is a map from Polymt

d , the space of monic degree-d polynomials up to
translation equivalence, to Multn, the space of multisets in C of size n = d − 1.
The various spaces and maps discussed are shown in Figure 23.

Definition 7.1 (Critical value map). Let Multn = Multn(C) be the space of
n-element multisets in C (Definition 1.5). The critical value map cvl : Polyd →
Multn sends a degree-d complex polynomial p to its n-element multiset cvl(p) of
critical values in C.

In Figure 23 the (diagonal) map cvl has been restricted to polynomials that are
monic. Multisets in C are in natural bijection with monic polynomials.

Definition 7.2 (Multisets and monic polynomials). There is a natural bijection
between Multn and Polym

n . The map Poly : Multn → Polym
n sends an n-

element multiset M ∈ Multn with M = zm1
1 zm2

2 · · · zmk

k and
∑

mi = n to the
polynomial p = Poly(M) with p(z) = (z − z1)

m1(z − z2)
m2 · · · (z − zk)

mk . The
inverse map rts : Polym

n → Multn sends a polynomial to its multiset of roots.

Definition 7.2 is used in the lower righthand corner of Figure 23. Moreover, as
discussed in Definition 2.1, Polym

d = Cd and Polymc
d = Cn using coefficients as

coordinates, and these give the identifications in Figure 23 between the first and
second rows. The classic version of the Lyashko–Looijenga map from Cn to Cn is
shown in the top row. Theorem 5.1.1 of [LZ04] summarizes its key properties.

Theorem 7.3 (LL map). The Lyashko–Looijenga map LL : Cn → Cn, from the
space of monic centered degree-d polynomials to the space of monic polynomials of
degree n = d− 1, is a polynomial finite map of degree dd−2.

These properties make it well-suited for investigations by algebraic geometers.
Here is a brief definition of the map and its key properties.
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Definition 7.4 (LL map, classic version). The classic version of the Lyashko–
Looijenga map sends a monic centered polynomial p of degree d to the monic poly-
nomial of degree n = d− 1 whose roots are the critical values of p. The coefficients
of the polynomials in both the domain and range can be used as coordinates to give
an induced map from Cn to Cn. See Figure 23. It is a polynomial map because the
coordinates in the range are defined by multivariable polynomial functions of the
coordinates in the domain, and it is a finite map of degree dd−2 because a generic
point in the range has exactly dd−2 preimages.

The bottom row of Figure 23 uses polynomials with an affine domain.

Definition 7.5 (Affine map). We say that p, q : C → C are equivalent up to trans-
lation if there is a constant b ∈ C such that q(z) = p(z + b). This is an equivalence
relation; let [p] = {q | q(z) = p(z+ b), b ∈ C} be the translation equivalence class of
p. If Polymt

d denotes monic polynomials of degree d up to translation, then there
is a quotient map Aff : Polym

d ↠ Polymt
d that sends p to [p]. We call this the

affine map since the domain of each polynomial p becomes, in essence, an affine
space with no fixed origin, instead of a 1-dimensional complex vector space.

Polynomials up to translation are equivalent to polynomials that are centered.

Remark 7.6 (Centering polynomials). For monic polynomials, the coefficient of
the term just below the leading term is the negative of the sum of its roots. In
particular, c1 = 0 and p is centered if and only if the average of the roots is at
the origin. Under precomposition with a translation, the average of the roots is
translated, and every equivalence class [p] contains a unique representative that is
centered. The map Polymt

d → Polymc
d sending [p] to its centered representative is a

section of the affine quotient map Aff : Polym
d ↠ Polymt

d and a homeomorphism.

Translation equivalence is a special case of a more general situation.

Remark 7.7 (Composing with linear functions). Let f(z) = az+b be an invertible
linear transformation, let g(z) = 1

a (z − b) be its inverse, and recall that these
maps are Euclidean similarities of the plane: translating, dilating, and rotating.
Postcomposing p : C → C with f applies the similarity f to the coordinate system
in the range. Concretely, if q(z) = f(p(z)) = a · p(z) + b, then cpt(q) = cpt(p)
and cvl(q) = f(cvl(p)) = a · cvl(p) + b. Precomposing p with f applies the inverse
similarity g to the coordinate system in the domain. If q(z) = p(f(z)) = p(az + b),
then cpt(q) = g(cpt(p)) = 1

a (cpt(p)− b) and cvl(q) = cvl(p).

This leads to the factorization of the critical value map shown in Figure 23.

Definition 7.8 (LL map). By Remark 7.7, all of the polynomials in [p] have the
same multiset of critical values, so the critical value map cvl : Polym

d → Multn

factors through the affine map Aff : Polym
d ↠ Polymt

d sending p 7→ [p]. Our
version of the LL map is the induced map LL : Polymt

d → Multn. Because of
the identifications on the left and right sides of Figure 23, this version of the LL
map has many of the properties listed in Theorem 7.3, such as finitely many point
preimages bounded above by dd−2.

Of particular interest here are restrictions the LL map to polynomials with
critical values is a specific portion of the range.
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Definition 7.9 (Restricted maps). For any subspace X ⊂ C (Remark 1.3), let
Polyd(X) be the collection of polynomials whose critical values lie in X, and
we use superscripts to restrict attention to those that are monic (m), centered
(c) or only considered up to translation (t). For any such X, the lower portion
of Figure 23 can be restricted in this subspace resulting in a restricted LL map
LL : Polymt

d (X) → Multn(X).

7.2. Polynomial strata. The stratification of multisets (Section 6) leads to a
double stratification of polynomials based on critical point shape, critical value
shape, and the arrow between them in the integer partition acyclic category.

Definition 7.10 (Polynomial strata). The space Polyd has a double stratification
by critical point shape and critical value shape. For any polynomial p of degree
d, its critical point shape is λ = λ(p) = Shape(cpt(p)), its critical value shape
is µ = µ(p) = Shape(cvl(p)), and the map from cpt(p) to cvl(p) determines

an arrow λ(p)
p→ µ(p) in the acyclic category IntPartn (Definition 1.10). Let

Polyλ→µ = {p ∈ Polyd | λ(p) p→ µ(p) is λ → µ} be the “preimage” of an arrow
in the acyclic category IntPartn. The double stratification is

Polyd =
⊔

λ,µ⊢n
λ→µ

Polyλ→µ.

Remark 7.11 (Extreme preimages). If p is a monic polynomial with an indiscrete
critical value multiset, then it has an indiscrete critical point multiset (Lemma 2.14).
In particular, the unique preimage of cvl(p) = {cn} under the LL map is [zd+ c] ∈
Polymt

d . At the other extreme, a discrete multiset with n distinct critical values is
a generic point with dd−2 preimages (Theorem 7.3).

The double stratification in Definition 7.10 factors through the affine map.

Definition 7.12 (Strata up to translation). For a fixed polynomial p, its critical
values are invariant under translation (Remark 7.7), so the critical value shape
µ(p) is a function of the translation equivalence class [p]. Its critical points are
moved under translation, but this leaves their shape invariant, so the critical point
shape λ(p) is also a function of [p]. In particular, the double stratification of
Polym

d factors through the affine map to give a double stratification of Polymt
d

with Polymt
λ→µ = Aff(Polym

λ→µ).

The double stratification is needed because of accidental equalities.

Definition 7.13 (Accidental equalities). When p is a polynomial with λ(p) < µ(p),
there are distinct critical points z1 ̸= z2 ∈ cpt(p) with equal critical values p(z1) =
p(z2) ∈ cvl(p), and we say that p has accidental equalities.

The Chebyshev polynomial of the first kind, defined by the equation Td(cos(θ)) =
cos(d · θ), is an extreme example of this phenomenon. It has d distinct roots, all
real, and n = d − 1 distinct real critical points. Every critical value, on the other
hand, is either 1 or −1, so for d at least 4, Td(z) has accidental equalities. Such
accidental equalities, however, have a limited impact on path lifting.

The LL map, like the Mult map, is a stratified covering map.

Theorem 7.14 (Stratified covering map). For all integer partitions λ, µ ⊢ n with
λ → µ, the restricted map LL : Polymt

λ→µ → Multµ(C) is a covering map.
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Theorem 7.14 is a consequence of [LZ04, Theorem 5.2.11] or [DM20, Theorem B],
but in both cases a certain amount of interpretive work is necessary. A proof based
on [DM20] is included in Appendix A.

Remark 7.15 (Constant finite point preimages). Theorem 7.14 is the polynomial
analogue of Theorem 6.19, but with less detail about the degrees of the covers. The
degrees of the covers and a polynomial analogue of Proposition 6.16 has been estab-
lished by Zvonkine [Zvo97]. In particular, the restricted map LL : Polymt

λ→µ(C) →
Multµ(C) has finite point preimages of constant size, and this constant can be
derived from the combinatorics of λ → µ. See also [LZ04, Theorem 5.2.2].

Remark 7.16 (Empty strata). For some arrows λ → µ the subspace Polymt
λ→µ

is empty. If p is a polynomial where µ(p) is the indiscrete partition, for example,
then λ(p) is also indiscrete (Remark 7.11). Thus Polymt

λ→µ is empty whenever µ is
indiscrete and λ ̸= µ. Note that Theorem 7.14 remains vacuously true in this case
since Polymt

λ→µ is a 0-sheeted cover of Multµ(C).

The critical value map and the LL map are locally onto.

Lemma 7.17 (Locally onto). The map cvl : Polym
d → Multn(C) is locally onto.

As a consequence, the map LL : Polymt
d → Multn(C) is also locally onto.

Proof. The main result of [BCN02] is that the map from complex polynomials to
critical values is onto. In fact, their proof easily extends to show that it is locally
onto in the sense that for any polynomial p and for any neighborhood N of p in
Polym

d the image cvl(N) contains a neighborhood of cvl(p). As a factor of the
cvl-map, the LL map inherits this property. □

The stratified product, multiset and polynomial spaces Cn, Multn(C), and
Polymt

d (C), and the stratified maps Mult and LL connecting them, give all three
spaces a stratified Euclidean metric.

Definition 7.18 (Stratified Euclidean metrics). The natural Euclidean product
metric on Cn has a Euclidean metric on each of its strata (Proposition 6.7), and
since the Mult map is a stratified cover defined as the quotient by the isometric
symmetric group action, there is a unique metric on Multn(C) that restricts to a
local isometry for each covering map in the stratification. This is the stratified Eu-
clidean metric on Multn(C). Simlilarly, the LL map is a stratified cover and there
is a unique metric on Polymt

d (C) that restricts to a local isometry for each covering
map in its stratification. This pulls the stratified Euclidean metric on Multn(C)
back to Polymt

d (C), and is the stratified Euclidean metric on Polymt
d (C). Since the

LL map and the Mult map use the same stratification in their common range, we
have local isometries between strata neighborhoods of polynomials, multisets and
n-tuples. Concretely, if p is a monic centered polynomial and x is an n-tuple with
common multiset M = cvl(p) = Mult(x), then there are small neighborhoods in
the appropriate strata and local isometries so that Np

∼= NM
∼= Nx.

Some cell structures on multiset spaces can also be lifted through the LL map.

Definition 7.19 (Stratified cell structures). A cell structure on Multn(X) is a
stratified cell structure if all points in the same open cell have the same shape.
In other words, the stratification of Multn(X) into open cells is a refinement of
the stratification Multn(X) =

⊔
λ⊢n Multλ(X) by the shape of these n-element
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{0} Cn {0} Polymt
d (C)

[0, 1] Multn(C) [0, 1] Multn(C)

IntPartn IntPartn

α̃

Mult

α̃

LL

α

∃!α̃

≥ Shape

α

∃!α̃

≥ Shape

Figure 24. Paths can be uniquely lifted through the Mult map
(left) and the LL map (right) when the multiset path α has a
weakly increasing shape.

multisets. The open cells in a stratified cell structure on Multn(X) lift through
the individual covering maps of the stratified LL map to provide the open cells of
a cell structure on Polymt

d (X). And with this lifted cell structure on the domain,
the LL map becomes a cellular map.

8. Unique Path Lifting

In this section we show that every path in Multn(C) lifts through the Mult
map and through the LL map, and this lift is unique when the shape of the path
is weakly increasing. We focus first on the Mult map (8.1) and then the LL map
(8.2).

8.1. Path-lifting through the Mult map. Lifting multiset paths to Cn is a
simpler situation than lifting them through the LL map, which is why they are
being considered first. The diagrams for the two situations are shown in Figure 24.

Definition 8.1 (Shapes and Multiset Paths). Let α : [0, 1] → Multn(C) be a path
and note that since α is continuous, the points in the set underlying the multiset
move around continuously in C. For each t ∈ [0, 1], the multiset α(t) has a shape
λ(t) = Shape(α(t)) in IntPartn that records its multiset of multiplicities. We say
that α has a weakly increasing shape if for all s ≤ t in [0, 1], we have λ(s) ≤ λ(t)
in IntPartn. Equivalently, the points (with multiplicity) moving around in C are
allowed to merge but not split, so that the size of the underlying set weakly decreases
over time as the integer partition weakly increases. It has a weakly decreasing shape
if s ≤ t in [0, 1] implies λ(s) ≥ λ(t) in IntPartn, or equivalently, the underlying
points are allowed to split but not merge. For any path α : [0, 1] → Y , the time
reversal of α is αrev : [0, 1] → Y with αrev(1− t) = α(t). Note that α has a weakly
increasing/decreasing shape if and only if αrev has a weakly decreasing/increasing
shape. Paths that remain in a single stratum Multλ(C) have a constant shape
λ(t) = λ for all t ∈ [0, 1].

We begin with an easy observation.

Lemma 8.2 (Paths and Strata). Let α : [0, 1] → Multn(C) be a multiset path and
let β : [0, 1] → Cn be a path with α = Mult ◦ β. If α(t) has constant shape µ and
SetPart(β(0)) = [µ], then α is a path in Multµ(C) and β is a path in C[µ].

Proof. Since α has constant shape, it is a path in Multµ(C). View the path α as
points with multiplicities moving around C without splitting or merging, and view
[µ] = SetPart(β(0)) as a way of replacing these multiplicities at the start point
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with initial labels. The unique continuous way to lift α to a path β in Cn is to drag
these initial labels along as the points move, and this unique lift stays in C[µ]. □

The main result in this section is that path liftings always exist and the lifting
is unique when the path to be lifted has a weakly increasing shape.

Theorem 8.3 (Lifting paths to Cn). For any path α : [0, 1] → Multn(C) and for
any lift of the start point α(0) to an n-tuple α̃(0) ∈ Cn with Mult(α̃(0)) = α(0),
there always exists a lifted path α̃ : [0, 1] → Cn with α = α̃ ◦Mult, and the lifted
path α̃ is unique when α has weakly increasing shape.

Proof. Since the map Mult is a locally onto (Corollary 6.20), every path in the
range has at least one lift to the domain. Let β1 and β2 be two lifts of α and recall
that the set {t | β1(t) = β2(t)} where they agree is always a closed subset of [0, 1].
If α has constant shape µ, then by Lemma 8.2, α is a path in Multµ(C) and both
β1 and β2 are paths in C[µ]. Since the restricted map Mult : C[µ] → Multµ(C) is
a covering map (Theorem 6.19), unique path lifting for covers shows that β1 and
β2 agree for all t ∈ [0, 1] and α has a unique lift in this case. To prove this when α
has a weakly increasing but non-constant shape, it is sufficient to consider α where
µ(t) = µ(0) for all 0 ≤ t < 1 and µ(0) < µ(1). More complicated weakly increasing
paths are concatenations of finitely many paths of this restricted type. Arguing as
above for the subpaths restricted to [0, t], we find that β1(t) = β2(t) for all t < 1.
But the portion on which they agree is closed so β1(1) and β2(1) are also equal. □

For the remainder of the section, we examine what can go wrong for paths that
do not have weakly increasing shape. To start, paths with weakly decreasing shape
can have multiple lifts, but only finitely many.

Corollary 8.4 (Finitely many lifts I). Let α : [0, 1] → Multn(C) be a path and let
α̃(0) ∈ Cn be a lift of its start point α(0). If α has a weakly descreasing shape, then
there exist at most n! lifted paths α̃ : [0, 1] → Cn with α = Mult ◦ α̃.
Proof. Since α has a weakly decreasing shape, its time reversal αrev has a weakly
increasing shape. By Theorem 8.3, for every preimage of the endpoint α(1) in Cn,
there is a unique lifted path α̃rev that starts at this preimage. It must end at one of
the preimages of α(0) and this defines a function from the preimages of α(1) to the
preimages of α(0). The number of preimages of α(1) sent to a fixed preimage α̃(0) of
α(0) is equal to the number of lifts of α starting at α̃(0). Since points in Multn(C)
have at most n! preimages in Cn, α has at most n! lifts starting at α̃(0). □

The upper bound of n! occurs when the path goes from one extreme to the other.

Example 8.5 (Maximal number of lifts I). Let α : [0, 1] → Multn(C) be any path
that has a weakly decreasing shape which starts at an indiscrete multiset (with 1
point of multiplicity n) and ends at a discrete multiset (with n points of multiplicity
1). The start point α(0) has a unique preimage in Cn and the endpoint α(1) has n!
preimages in Cn. The time-reversed path αrev has a unique lift that starts at each
of the preimages of α(1) and these lifts all end at the unique preimage of α(0). In
particular, α has n! distinct lifts that start at the unique preimage of α(0).

Finally, paths that are not weakly monotonic can have uncountably many lifts.

Example 8.6 (Uncountable lifts I). For n = 2 and R ⊂ C, we give an explicit
example of a path α : [0, 1] → Mult2(R) ⊂ Mult2(C) that has uncountably many
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lifts to R2 ⊂ C2. The space Mult2(R) is the closed half-plane obtained by folding
the plane R2 across the line y = x, and we identify Mult2(R) with the lower half-
plane {(x, y) | x ≥ y}. Every path in the plane projects to a path in the half-plane
by composing with the map Mult, and every path in the half-plane has at least
one lift to the plane with a given lift of its starting point, but there is a choice
of lift whenever the path in the half-plane leaves the diagonal boundary line. Let
s : [0, 1] → R be the continuous function

s(t) =

{
t sin(π/t) if t ̸= 0

0 if t = 0

and let st be a shorthand for s(t). Note that s−1(0) = {t ∈ I | st = 0} is the set
{0}∪{ 1

k | k ∈ N}, and that the complement I−s−1(0) is a countable union of open

intervals. Next, let β : [0, 1] → R2 be the path where β(t) = (st,−st) and let α be
its projection: α = Mult ◦ β. The image of β is contained in the line x+ y = 0 of
slope −1, and it is on the diagonal x = y exactly for t ∈ s−1(0). In the half-plane
Mult2(R) we have α(t) = (|st|,−|st|). The path β is one lift of α that starts
at the point (0, 0) but there many others. For each open time interval between
consecutive points where α(t) is in the boundary, there are two possible lifts, one
above the diagonal line y = x and one below. And since there are countably many
such intervals, there are 2ℵ0 possible lifts.

8.2. Path-lifting through the LL map. We now prove analogous results for
path-lifting through the LL map. We start by establishing the analog of Lemma 8.2
using the metric complexes constructed in Part 1. Let be a large rectangle in the
range of p with cvl(p) ⊂ int( ), and let P′

p be the corresponding metric rectangular
critical point complex (Definition 3.22) with its CAT(0) metric (Remark 3.23).

Lemma 8.7 (Distances). If z1, z2 are points in P′
p and the interior of the unique

geodesic between them is disjoint from cpt(p), then the distance dP′
p
(z1, z2) between

them in P′
p is equal to the distance dQ′

p
(p(z1), p(z2)) between their images in Q′

p.

Proof. By Remark 3.23, p is a local isometry from the CAT(0) metric space P′
p to

the CAT(0) metric space Q′
p except at the points in cpt(p). The unique geodesic

from z1 to z2 is a local geodesic in P′
p and, because it has no critical points in its

interior, it is sent to a local geodesic in the rectangular complexQ′
p. A local geodesic

in a Euclidean rectangle, however, is the unique geodesic between its endpoints. □

Corollary 8.8 (Points and values). If the minimum distance between distinct crit-
ical points in P′

p is ϵ, then the minimum distance between distinct critical values
in Q′

p is at most ϵ. In particular, if the distinct critical values in Q′
p are at least

ϵ-separated, the distinct critical points in P′
p are at least ϵ-separated.

Proof. If z1, z2 ∈ cpt(p) are distinct critical points that realize the minimal distance
ϵ, then there can be no critical point in the interior of the unique geodesic connecting
them and, by Lemma 8.7, the distance between p(z1), p(z2) ∈ cvl(p) is exactly ϵ. □

Note that the implications in Lemma 8.7 and Corollary 8.8 are not reversible.
The Chebyshev polynomial Td with d ≥ 4 has distinct critical points with equal
critical values. A small perturbation of Td, breaking an accidental equality, has
critical points that remain ϵ-separated, but critical values that are not. Corollary 8.8
can be reframed as an assertion about paths and strata.
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Lemma 8.9 (Paths and strata). Let α : [0, 1] → Multn(C) be a multiset path and
let β : [0, 1] → Polymt

d be a lift of α through the LL map, so that α = LL ◦ β. If
α(t) has a constant shape µ and β(0) has shape λ → µ, then α is a path in the
stratum Multµ(C) and β is a path in the stratum Polymt

λ→µ.

Proof. That α is a path in Multµ(C) is clear from its constant shape (Lemma 8.2).
Moreover, since the interval [0, 1] is compact and the points with multiplicity in α(t)
neither merge nor split, there exists an ϵ > 0 such that the points with multiplicity
in α(t) are ϵ-separated for every t. By Corollary 8.8, the distinct critical points of
β(t) are also ϵ-separated for every t. In particular, β must have constant critical
point shape, and this shape must be Shape(β(0)) = λ. □

We now proceed as before. Any multiset path α with weakly increasing shape
can be subdivided into finitely many subintervals where the shape is constant, and
by Lemma 8.9, the only possible lifts of these subintervals through the LL map
occur in specific polynomial strata. The main result in this section is a polynomial
version of Theorem 8.3.

Theorem 8.10 (Lifting paths to Polymt
d (C)). For any path α : [0, 1] → Multn(C)

and for any lift of α(0) to α̃(0) = [p] ∈ Polymt
d (C) with LL(α̃(0)) = cvl(p) = α(0),

there always exists a lifted path α̃ : [0, 1] → Polymt
d (C) with α = α̃ ◦ LL, and the

lifted path α̃ is unique when α has weakly increasing shape.

Proof. Since the LL map is locally onto (Lemma 7.17), every path in the range has
at least one lift to the domain. Let β1 and β2 be two lifts of α and recall that the
set {t | β1(t) = β2(t)} where they agree is always a closed subset of [0, 1]. If α has
constant shape µ, then by Lemma 8.9, α is a path in Multµ(C) and both β1 and

β2 are paths in Polymt
λ→µ. Since the restricted map LL : Polymt

λ→µ → Multµ(C)
is a covering map (Theorem 7.14), unique path lifting for covers shows that β1 and
β2 agree for all t ∈ [0, 1] and α has a unique lift in this case. To prove this when α
has a weakly increasing but non-constant shape, it is sufficient to consider α where
µ(t) = µ(0) for all 0 ≤ t < 1 and µ(0) < µ(1). More complicated weakly increasing
paths are concatenations of finitely many paths of this restricted type. Arguing as
above for the subpaths restricted to [0, t], we find that β1(t) = β2(t) for all t < 1.
But the portion on which they agree is closed so β1(1) and β2(1) are also equal. □

The consequences of Theorem 8.10 are similar to those of Theorem 8.3. Here
are polynomial versions of Corollary 8.4, Example 8.5, and Example 8.6.

Corollary 8.11 (Finitely many lifts II). Let α : [0, 1] → Multn(C) be a path and
let α̃(0) ∈ Polymt

d (C) be a lift of its start point. If α has a weakly decreasing shape,
then there are at most dd−2 lifted paths α̃ : [0, 1] → Polymt

d (C) with α = LL ◦ α̃.
The proof is similar to that of Corollary 8.4 and has been omitted.

Example 8.12 (Maximal number of lifts II). Let α : [0, 1] → Multn(C) be a path
with a weakly decreasing shape that starts at the indiscrete multiset and ends at
a discrete multiset. By Remark 7.11, the start point has a unique preimage and
the endpoint has dd−2 preimages in Polymt

d (C). Arguing as in Example 8.5 shows
that α has exactly dd−2 lifts starting at the unique lift of the start point.

Example 8.13 (Uncountable lifts II). Let β : [0, 1] → Poly3(C) be a continuous
path in the space of monic cubic polynomials defined by setting β(t) = pt where
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pt(z) = z3− 3
2stz

2+1 and st is as defined in Example 8.6. Let α : [0, 1] → Mult2(C)
be defined by the composition α = cvl ◦ β. Concretely, the derivative p′t(z) factors
as 3z(z−st), cpt(pt) = {0, st} and α(t) = cvl(pt) = {1, 1− 1

2s
3
t}. By Remark 7.11,

when st = 0 and α(t) = {12} is indiscrete, [z3 +1] is its unique preimage under the
LL map, and when st ̸= 0 and α(t) is generic, there are 31 = 3 preimages. As in
Example 8.6, the set s−1(0) = {0}∪{ 1

k | k ∈ N} and its complement I−s−1(0) is a
countable union of open intervals. For each open time interval between consecutive
points where α(t) is indiscrete, there are three possible lifts. And since there are
countably many such intervals, there are 3ℵ0 possible lifts of α.

9. Polynomial Homotopies

Recall that Polymt
d (U) denotes the space of monic degree-d polynomials up

to translation with critical values in the subspace U ⊂ C. For simplicity we call
Polymt

d (U) the polynomials over U. The goal of this section is to clarify how the
polynomial space Polymt

d (U) changes as U changes. The first thing to point out
is that there is something to prove. For example, if f : C → C is a homeomorphism
with f(U) = V, is it true that the space Polymt

d (U) of polynomials over U and
the space Polymt

d (V) of polynomials over V are homeomorphic? This is obvious
for planar d-branched covers.

Example 9.1. Let f : C → C be a homeomorphism of C with f( ) = , sending
the closed unit disk homeomorphically to a closed rectangle . If q is any planar
d-branched cover with cvl(q) ⊂ , then f ◦ q is a planar d-branched cover with
cvl(f ◦ q) ⊂ , and composing in the other direction with f−1 shows that this
establishes a bijection between the infinite-dimensional function space of planar
d-branched covers with critical values in and the infinite-dimensional function
space of planar d-branched covers with critical values in . On the other hand,
there is no homeomorphism f : C → C with f( ) = where f ◦ p is a polynomial
for any polynomial p with cvl(p) ⊂ .

One way to show that this is true for polynomials is to characterize monic cen-
tered polynomials by their multiset of critical values and the monodromy, and we
use this perspective in Part 3. Here we take a more direct approach. For the
subspaces of C under consideration (Remark 1.3), homeomorphic subspaces of C
can slowly transition from one to the other via a homotopy of C, which ends up
inducing a homeomorphism of the polynomials over those subspaces.

Definition 9.2 (Homotopies). A homotopy is a continuous map H : U × I → Y
with I = [0, 1]. We write H(u, t) = ht(u) = hu(t) for each u ∈ U and t ∈ I. These
refer to the time map ht : U → Y, and the path map hu : I → Y. We also write ut

for H(u, t) = hu(t) and Ut for H(U, t) = ht(U), so that hu is a path from u0 to u1

and H is a homotopy from U0 to U1.

A homotopy of the points in C induces, for each n, a homotopy of the tuples in
Cn and a homotopy of multisets in Multn(C).
Definition 9.3 (Induced homotopies). Given a subset U ⊆ C, a point homo-
topy is a homotopy H : U × I → C from U0 to U1 inside C. This induces a
tuple homotopy Hn : Un × I → Cn from (U0)

n to (U1)
n inside Cn, obtained by

applying the homotopy H to each factor of Un simultaneously. Taking the quo-
tient by the coordinate-permuting Symn action on Un yields the multiset homo-
topy Hn : Multn(U) × I → Multn(C) from Multn(U0) to Multn(U1) inside
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(z, t) H(z, t) U× I C

(z, t) Hn(z, t) Un × I Cn

(M, t) Hn(M, t) Multn(U)× I Multn(C)

H

Hn

Mult×1 Mult

Hn

Figure 25. A point homotopy H, tuple homotopy Hn, and mul-
tiset homotopy Hn, with z ∈ U, z ∈ Un and M ∈ Multn(U).

Multn(C); see Figure 25. Concretely, if M ∈ Multn(U) and z ∈ Un is any
n-tuple with M = Mult(z), then Hn(M, t) = Mult(Hn(z, t)).

Definition 9.4 (Induced time maps and path maps). Let H be a point homotopy
with induced tuple homotopy Hn and multiset homotopy Hn. The time maps are
denoted ht : U → C for H, (hn)t : U

n → Cn for Hn, and (hn)t : Multn(U) →
Multn(C) for Hn. Using the notation Ut = ht(U), we have the following path
maps: a point path hz : I → Ut for H, a tuple path (hn)z : I → (Ut)

n for Hn, and
a multiset path (hn)

M : I → Multn(Ut) for Hn.

The point paths in point homotopies may merge or split over time.

Definition 9.5 (Splitting and merging). Let H : U× I → C be a point homotopy.
We say that H splits points if there are distinct points u, v ∈ U and distinct times
s < t ∈ I such that us = vs and ut ̸= vt. Similarly, we say that H merges points if
there are distinct points u, v ∈ U and distinct times s < t ∈ I such that us ̸= vs and
ut = vt. When H does not split points it is nonsplitting and when it does not merge
points it is nonmerging. A point homotopy preserves points if it is both nonsplitting
and nonmerging. In particular, for a point-preserving homotopy, ut = vt at some
time s ∈ I if and only if ut = vt for all t ∈ I.

Nonsplitting homotopies can be initially simplified.

Remark 9.6 (Initial inclusions). When H is a nonsplitting point homotopy, points
with u0 = v0 stay together throughout, so the entire homotopy H factors through
the quotient map h0 × 1 : U × I ↠ U0 × I to produce a simpler point homotopy
H ′ : U0 × I → C. This allows us to assume without loss of generality that all
nonsplitting homotopies are injective at time t = 0 with U = U0.

A nonsplitting point homotopy leads to multiset paths that are uniquely liftable.

Remark 9.7 (Nonsplitting). Let H : U× I → C be a point homotopy and let Hn

be the corresponding multiset homotopy. When H is nonsplitting, the points in a
multiset path can merge but not split, which means that they have a weakly in-
creasing shape. In particular, multiset paths in Hn satisfy the necessary conditions
to be uniquely liftable through the LL map (Theorem 8.10).

One consequence of Remark 9.7 is homotopy at the level of polynomial spaces.

Definition 9.8 (Polynomial homotopies). Let H : U × I → C be a nonsplitting
point homotopy with U = U0 ⊂ C. We can use Theorem 8.10 to define a function

H̃n : Poly
mt
d (U) × I → Polymt

d (C) as follows. Let p be a monic degree-d poly-
nomial with [p] ∈ Polymt

d (U) and let M = LL([p]) = cvl(p) ∈ Multn(U). By
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Polymt
d (U)× I Polymt

d (C)

Multn(U)× I Multn(C)

H̃n

LL×1 LL

Hn

Figure 26. The polynomial homotopy H̃n can be viewed as a
lift of the multiset homotopy Hn through the LL map, i.e. this
diagram commutes.

Polymt
λ→µ(U) Polymt

λ→µ(Ut)

Multµ(U) Multµ(Ut)

(h̃n)t

LL LL

(hn)t

Figure 27. The time map (h̃n)t is a lift of the time map (hn)t
through the LL map when restricted to a stratum in the double
stratification of Polymt

d (C).

Remark 9.7, the multiset path α = (hn)
M : I → Multn(C) starting at M has a

weakly increasing shape and [p] is a lift of its starting point α(0) through the LL
map. Next, by Theorem 8.10 there is a unique lift of α to a path β : I → Polymt

d (U)

that starts at [p]. Finally, we define H̃n at the point ([p], t) ∈ Polymt
d (U) × I to

be β(t). By construction, LL ◦ H̃n = Hn ◦ (LL × 1) (see Figure 26), so H̃n is a
continuous map which we refer to as a polynomial homotopy.

10. Polynomial Spaces

In this section we establish the homeomorphisms and compactifications shown in
Figure 28 and the quotients and deformation retractions shown in Figure 29. The
relationships between these polynomial spaces mirror the relationships between
subspaces of C used to define them, and this is what prompted our introduction
of a visual shorthand (Definition 1.2). We begin by establishing continuous maps
between polynomial spaces.

Remark 10.1 (Time maps). Let H : U× I → C be a nonsplitting point homotopy

and let H̃n be the corresponding polynomial homotopy. For any s < t in I, we can
restrict I to the interval [s, t] and apply Remark 9.6 to obtain the point and mul-
tiset time maps ht : Us → Ut and (hn)t : Multn(Us) → Multn(Ut) respectively.

The polynomial homotopy H̃n is then defined by lifting the multiset paths in Hn,

which gives us the polynomial time map (h̃n)t : Poly
mt
d (Us) → Polymt

d (Ut). In
particular, this is a continuous map from one polynomial space to another.

Proposition 10.2 (Homeomorphisms). Let U be a compact subset of C and let
H : U× I → C be a point-preserving homotopy. Then for all s < t in I, the spaces
Polymt

d (Us) and Polymt
d (Ut) are homeomorphic.

Proof. First, consider the restricted map H : U × [s, t] → C and its time reversal
Hrev : U × [s, t] → C defined by Hrev(u, x) = H(u, s + t − x). Since ht : Us → Ut
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and the time reversal hrev
s : Ut → Us are inverses of one another, each time map

is a bijection, and since U is compact, it is also a homeomorphism. Since H is
nonsplitting, we can apply Remark 10.1 to see that the polynomial time map is a

continuous function (h̃n)t : Poly
mt
d (Us) → Polymt

d (Ut). Since H is nonmerging,
the time reversal Hrev is a nonsplitting point homotopy which yields the continuous

time map (h̃n)
rev
s : Polymt

d (Ut) → Polymt
d (Us). Finally, the fact that ht and hrev

s

are inverses tells us that (h̃n)t and (h̃n)
rev
s are inverses of one another, so the proof

is complete. □

The following corollary is an immediate application of Proposition 10.2.

Corollary 10.3 (Topological variations). If U and V are two closed intervals, two
closed topological disks, two closed annuli, or two closed circles embedded in C (so
that there is a point-preserving homotopy U to V inside C), then Polymt

d (U) and
Polymt

d (V) are homeomorphic.

The homeomorphisms produced by Proposition 10.2 and Corollary 10.3 are not
canonically defined, but there are sufficiently many to justify de-emphasizing the
fine details of the shapes listed in Definition 1.2.

Remark 10.4 (Shapes). The parenthetical point-preserving homotopy condition
in the statement of Corollary 10.3 is, strictly speaking, unnecessary since all embed-
dings of these simple spaces into C are connected by point-preserving homotopies,
and more exotic possibilities would detract from our main point. For any reasonably
nice class of embeddings (such as all closed Euclidean rectangles in C) there are
more or less obvious point-preserving homotopies between them. And by Proposi-
tion 10.2 there are homeomorphisms between the corresponding polynomial spaces.
In particular, Polymt

d ( ) can be discussed without specifying the precise closed
rectangle, since there is only one such space up to a choice of homeomorphism.

Lemma 10.5 (Closed and bounded). If U ⊂ C is closed/bounded/compact, then
Un, Multn(U) and Polymt

d (U) are closed/bounded/compact.

Proof. The properties of being closed, bounded and/or compact pass through finite
direct products and these properties also project and lift through surjections where
there is a finite upper bound on the size of a point preimage. □

Lemma 10.6 (Nested compact sets). Let U and V be open subsets of C, and
suppose they can be expressed as the unions of nested compact sets U1 ⊂ U2 ⊂ · · ·
and V1 ⊂ V2 ⊂ · · · respectively. If there is a homotopy from U to V such that the
restriction to each Ui is point-preserving, then Polymt

d (U) ∼= Polymt
d (V ).

Proof. By Proposition 10.2 and Lemma 10.5, Polymt
d (Ui) and Polymt

d (Vi) are
compact and homeomorphic. Since Polymt

d (U) and Polymt
d (V ) are each the nested

union of these homeomorphic compact sets, it follows that the two polynomial
spaces are homeomorphic as well. □

We are now ready to prove Theorem E.

Theorem 10.7 (Theorem E). The complex plane C, the punctured plane C0 and
the real line R are homeomorphic to the open rectangle , the open annulus and
the open interval respectively, and these induce homeomorphisms of polynomial
spaces Polymt

d (C) ∼= Polymt
d ( ), Polymt

d (C0) ∼= Polymt
d ( ) and Polymt

d (R) ∼=
Polymt

d ( ).



GEOMETRIC COMBINATORICS OF POLYNOMIALS II 59

Proof. Let ⊂ C be an open rectangle and let H : C × I → C be the standard
point-preserving homotopy from C (viewed simply as the plane) to obtained by
rescaling the real and imaginary coordinates separately. For each positive integer k,
let Uk ⊂ C be the closed square of side length k centered at the origin. Then C is
the union of the compact setsU1 ⊂ U2 ⊂ · · · , andH transforms these to a sequence
of homeomorphic nested compact sets V1 ⊂ V2 ⊂ · · · with as their union. By
Lemma 10.6, Polymt

d (C) ∼= Polymt
d ( ). The other two homeomorphisms follow

from similar arguments. □

Next, we consider the compatibility of the homeomorphisms above with natural
compactifications.

Proposition 10.8 (Special compactifications). Let U ⊂ C be a closed interval /
closed square / closed disk / closed annulus and let U be the corresponding
open interval / open square / open disk / open annulus , so that U
is the compact closure of U . Then the compact closure of Un in Cn is Un, the
compact closure of Multn(U) in Multn(C) is Multn(U), and the compact closure
of Polymt

d (U) in Polymt
d (C) is Polymt

d (U).

Proof. By Lemma 10.5, Un, Multn(U) and Polymt
d (U) are compact and closed,

so it is clear that the closure of the U -version is contained in the U-version in each
case. In the other direction, there exist point-preserving homotopies H that shrink
U into the interior of U in each case, and the time-reversed version H ′ expands a
closed subspace of U , homeomorphic to U, to all of U. Once we lift H ′ to a tuple,
multiset and polynomial homotopy, it becomes clear that every tuple / multiset
/ polynomial in Un / Multn(U) / Polymt

d (U) is the endpoint of a path that
otherwise remains in Un / Multn(U) / Polymt

d (U). In particular, the version
with U is contained in the closure of the version with U . □

As an immediate consequence, we obtain a proof of Theorem F.

Theorem 10.9 (Theorem F). The polynomial spaces Polymt
d ( ), Polymt

d ( ) and
Polymt

d ( ) are compactifications of Polymt
d ( ), Polymt

d ( ) and Polymt
d ( ).

Proof. This follows from Proposition 10.8 and Theorem E. □

A simple argument shows that some polynomial spaces are dense in others.

Remark 10.10 (Dense). Let H : T× I → C be a point-preserving homotopy that
rigidly rotates the unit circle and let p be any polynomial where −1 is a critical
value. By choosing an appropriate portion of circle rotation over time and lifting
this to a path of polynomials in Polymt

d ( ), we can see [p] ∈ Polymt
d ( ) is a limit

of polynomials in Polymt
d ( ). In particular, Polymt

d ( ) is dense in Polymt
d ( ).

Example 10.11 (Homeomorphisms and compactifications). Figure 28 shows a va-
riety of inclusions, homeomorphisms and compactifications of polynomial spaces
over R, C, C0, T, an open interval , an open rectangle , an open disk , an
open annulus , a closed interval , a closed rectangle , a closed disk , a
closed annulus and a circle . The inclusions are immediate: if V ⊂ U , then
Polymt

d (V ) ⊂ Polymt
d (U) by definition. The homeomorphisms follow from Propo-

sition 10.2 and the obvious point-preserving homotopies. And the compactifications
follow from Proposition 10.8.
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Polymt
d (R) Polymt

d (C) Polymt
d (C) Polymt

d (C0) Polymt
d (T)

Polymt
d ( ) Polymt

d ( ) Polymt
d ( ) Polymt

d ( ) Polymt
d ( )

Polymt
d ( ) Polymt

d ( ) Polymt
d ( ) Polymt

d ( ) Polymt
d ( )

∼= ∼= ∼= ∼=

cmpt cmpt

∼=

cmpt cmpt

∼=

Figure 28. Homeomorphisms and compactifications of spaces of
polynomial over R, C, C0, T, an interval, a rectangle, a disk, an
annulus, a circle and their interiors.

Proposition 10.12 (Special quotients). There is a surjective quotient map from
Polymt

d ( ) to Polymt
d ( ) where the only identifications are among the polyno-

mials with a critical value at an endpoint of the interval. Similarly, there is a
surjective quotient map from Polymt

d ( ) to Polymt
d ( ) where the only identifica-

tions are among the polynomials with a critical value in the left or right side of the
rectangle.

Proof. A closed interval in C can be stretched around and moved in a point-
preserving way until identifying its endpoints at time t = 1 to form an embed-
ded circle. For example, if U = is embedded in C as the left half of the unit
circle T and parameterized as U = {e(s) | s ∈ [− 1

4 ,
1
4 ]} using Definition 4.1,

then the map H : U × I → T that sends (e(s), t) to e((1 + t) · s) is a nonsplit-
ting point homotopy with these properties. This map is point-preserving except
that at time t = 1, its length has doubled, covering all of T with the endpoints
overlapping at e( 12 ) = e(− 1

2 ) = −1. In particular, if H ′ is H restricted to V × I
where V is U with both endpoints removed, then H ′ is point-preserving. The time

t = 1 map of the polynomial homotopy H̃n is a map q that sends Polymt
d ( )

to Polymt
d ( ) (Lemma 10.1), and the restricted version H̃ ′

n is a homeomorphism
between Polymt

d ( ) and Polymt
d ( ) (Lemma 10.6). Since Polymt

d ( ) is the
closure of Polymt

d ( ) (Lemma 10.5) and Polymt
d ( ) is dense in Polymt

d ( ) (Re-
mark 10.10), the map q is surjective. And the homeomorphic embedding of the
polynomials with all critical values in the interior of the interval means that the
only identifications are among those polynomials with critical values at the end-
points. The argument in the second case is nearly identical except that the unit
circle is expanded to include a closed interval of possible positive magnitudes. □

The special quotient from Polymt
d ( ) to Polymt

d ( ) is best understood through
an example. See Example 15.2.

Definition 10.13 (Deformation retracting homotopies). Recall that a deformation
retraction from a topological space U to a subspace V is a map H : U × I → U
such that h0(u) = u, ht(v) = v and h1(u) ∈ V for all u ∈ U, v ∈ V and t ∈ I.
Let V ⊂ U be subspaces of C and let H : U × I → C be a nonsplitting point
homotopy. We say that H is a nonsplitting deformation retracting point homotopy
from U to V if the image of H lies in U and H, with the range restricted to U, is
a deformation retraction from U to V.
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Polymt
d ( ) Multn( )

Polymt
d ( ) Multn( )

Polymt
d ( ) Multn( )

Polymt
d ( ) Multn( )

LL

d.r.

q×1

d.r.

q

LL

Figure 29. The left-to-right LL maps, back-to-front quotient
maps, and the top-to-bottom deformation retractions for the 2n-
dimensional cell complexes associated with the four key shapes.

Proposition 10.14 (Deformation retractions). If H is a nonsplitting deforma-

tion retracting point homotopy from U to V inside C, then there is a H̃n-induced
deformation retraction from Polymt

d (U) to Polymt
d (V) inside Polymt

d (C).

Proof. At time t = 0, H is the identity map on U and H̃n is the identity map on

Polymt
d (U), and since the range of H remains in U, the range of H̃n remains in

Polymt
d (U). Next, a multiset in V remains fixed under Hn and the unique lift of

this constant multiset path is a constant polynomial path. Thus, H̃n restricts the
identity map on Polymt

d (V ) at each time t. Finally, at time t = 1 the range of H

is in V, so at time t = 1 the range of H̃n is in Polymt
d (V). □

We now establish the last of our main tools.

Theorem 10.15 (Theorem G). A deformation retraction of onto any embedded
arc induces a deformation retraction from Polymt

d ( ) to Polymt
d ( ). Similarly,

the deformation retraction of onto any core curve induces a deformation
retraction from Polymt

d ( ) to Polymt
d ( ).

Proof. This follows immediately from Proposition 10.14. □

The results from this section establish the maps between the polynomial space on
the lefthand side of Figure 29. The two back-to-front quotient maps are the special
quotients of Proposition 10.12. The two top-to-bottom deformation retractions
follow from the obvious nonsplitting deformation retracting point homotopies from
a closed rectangle to a horizontal line segment and from a closed annulus to a circle.
Finally, if we choose quotients and deformation retractions that commute at the
level of subspaces of C, the corresponding polynomial versions also commute. The
maps between the multiset spaces on the right are induced by the same set of point
homotopies, and the LL map sends the four polynomial spaces on left to the four
multiset spaces on the right.
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Part 3. Geometric Combinatorics

The goal of Part 3 is to prove Theorems A, B, C, and D, which are assertions
about metric cell structures for the polynomial spaces Polymt

d (X) when X is ,
, , or , respectively. Part 3 is structured as follows. In Section 11, we recall

the monodromy action of a planar branched cover and discuss its relationship with
the side permutations defined in Section 5. In Section 12 we prove Theorem A,
in Section 13 we proof Theorem B, in Section 14 we prove Theorem C, and in
Section 15 we prove Theorem D.

11. Monodromy and Side Permutations

There is a direct connection between the monodromy action of a branched cover
and the side permutations defined in Section 5. We begin with the general results
(11.1) and then connect them to the combinatorics of our complexes (11.2).

11.1. Monodromy. The monodromy action of a branched cover is a classical no-
tion. Here we recall the basic definitions and record a useful characterization of
polynomials (Proposition 11.6). For a different perspective on some of the mon-
odromy, see [DM22, §9].

Definition 11.1 (Monodromy). Let p : C → C be a planar d-branched cover and
let z be a regular point in the range. Regular paths based at z in the range lift
to d paths that permute the d preimages of z in the domain. This monodromy
action can be encoded in a group homomorphism π1(C \ cvl(p), z) → Symd. Both
the topology of the connected d-sheeted cover and the monodromy action can be
reconstructed from this group homomorphism. See [Hat02] for details.

Definition 11.2 (Constellations). When p has ℓ distinct critical values, the funda-
mental group π1(C\cvl(p), z) is a free group Fℓ of rank ℓ, and the map Fℓ → Symd

can be described by the image of an ordered basis, i.e. by an ordered ℓ-tuple of
permutations g = [g1 g2 · · · gℓ] ∈ (Symd)

ℓ. One way of producing ℓ loops that rep-
resent an ordered basis of Fℓ comes from drawing a star graph with ℓ arcs from z to
the ℓ critical values with disjoint interiors. The ℓ loops are those that travel along
one of these arcs, stopping just short of a critical value, going clockwise around the
critical value, and returning along the same arc to z. These loops define a basis
for the free group Fℓ. When the basis elements and the corresponding permuta-
tions are linearly ordered according to the clockwise order that the arcs leave z, the
product of these ℓ permutations in this order is a d-cycle. In [LZ04] these are called
constellations. In the generic case where there are n critical values of multiplicity
1, the gi are transpositions and the n-tuple g is a minimum length factorization of
a fixed d-cycle into n = d− 1 transpositions.

A continuous motion of the critical values that keeps them distinct but returns
them setwise to their original positions alters the monodromy action in predictable
ways. In the generic polynomial case, there is a Braidn action on n-tuples of
transpositions.

Definition 11.3 (Hurwitz action). Let G be a group and denote each n-tuple g
in Gn by a row vector of the form g = [g1 g2 · · · gn], and let {β1, . . . , βn−1} be the
standard generating set for the n-strand braid group Braidn. The Hurwitz action
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of Braidn on Gn is defined by setting βi · g equal to

βi · [g1 · · · gi−1 gi gi+1 gi+2 · · · gn] = [g1 · · · gi−1 gi+1 g
gi+1

i gi+2 · · · gn]

where the altered portion has been underlined and xy denotes the conjugate y−1xy.
This is called an elementary Hurwitz move. One easily verifies that this action
satisfies the relations in the standard presentation of Braidn. Under the Hurwitz
action, the product of the entries in this order remains constant.

Hurwitz defined this action in his 1891 paper [Hur91] well before Artin’s formal
introduction of braid groups as an object of study [Art25, Art47]. In the generic
case, the action is transitive.

Remark 11.4 (Hurwitz transitivity). It is well-known that there are exactly dd−2

ways to factor the d-cycle δ = (1 2 · · · d) into n = d − 1 transpositions, which
correspond to the dd−2 maximal chains in NCPermd = NCPartd, and to the
dd−2 n-dimensional simplices in |NCPermd|∆ = |NCPartd|∆. And the Hurwitz
action is transitive on these sets [BDSW14]. In fact, for any permutation π ∈ Symd

of absolute length k (Definition 4.18), the Braidk action on factorizations of π into
a product of k transpositions is also transitive. This is clear since the factorizations
and the transitivity take place cycle by disjoint cycle. This more general property
is known as local Hurwitz transitivity.

This action can be used to distinguish the dd−2 generic monic centered polynomi-
als with the same set of n distinct critical values.3 More generally, monic centered
polynomials are distinguished by their critical values and their monodromy actions
(Proposition 11.6). This elementary result is not usually stated in these terms, so
we include a proof. We begin with a special case.

Lemma 11.5 (Monodromy and critical values). Monic centered polynomials with
the same generic set of critical values and the same monodromy action are equal.

Proof. Let p and q be generic monic centered polynomials of degree d with cvl(p) =
cvl(q) = M with Shape(M) = 1n as their common (multi)set of critical values.
We know that there are exactly dd−2 polynomials in Polymc

d (C) with cvl(p) = M
(Theorem 7.3). Next, any braided motion of the n critical points extends to a
point-preserving homotopy of C, which induces an automorphism of Polymc

d (C)
(Lemma 10.6). As a consequence there exists a polynomial in Polymc

d (C) with
cvl = M for each of the dd−2 possible monodromy actions in the orbit of the Hur-
witz action (Remark 11.4). In other words, the map from the dd−2 polynomials in
Polymc

d (C) with cvl = M to the dd−2 possible monodromies is onto, and therefore
also injective. □

Proposition 11.6 (Monodromy and critical values). Monic centered polynomials
with the same multiset of critical values and the same monodromy action are equal.

Proof. Let p and q be monic centered polynomials of degree d with cvl(p) =
cvl(q) = M , S = Set(M) and ℓ = |S| = |M |Set. Let U ⊂ C be a small closed
neighborhood of S and note that Multn(U) is a small open neighborhood of M
in Multn(C). Let p1 and q1 be generic polynomials in Multn(U) near p and q
(Lemma 7.17). By dragging their critical values around inside U we may assume

3Recall that monic centered polynomials are the distinguished representatives of equivalence
classes of monic polynomials up to precomposition with a translation (Remark 7.6).
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that cvl(p1) = cvl(q1) = M1 of shape 1n. By Remark 11.4 and Lemma 11.5 we
know that there is a braided motion of M1 which transforms p1 into q1, but more
is true. Let πi be the monodromy permutation corresponding to the unique critical
value of M in the component Ui, (coming from an arc from z to ∂Ui, clockwise
around the boundary of Ui and then back to z) and note that πi is the same
permutation for both p and q since their monodromy actions agree, and for their
perturbations p1 and q1 since the loop remains regular and the permutation un-
changed as p and q are perturbed. For an appropriate choice of little loops, πi can
be factored into transpositions coming from the elements of M1 in Ui. In particu-
lar, both p1 and q1 produce local transposition factorizations of πi. Local Hurwitz
transitivity means that the transposition factorization of πi coming from p1 can
be transformed into the transposition factorization of πi coming from q1 by only
moving the critical values of M1 inside Ui. Once all of these local modifications
are made in each component of Ui, the transformed p1 has the same monodromy
as q1 and they are equal by Lemma 11.5. By picking U to be an arbitrarily small
neighborhood of S, one can show that the distance from p to p1 to q1 to q in Polymt

d

is also arbitrarily small. Thus p = q. □

11.2. Side permutations. We now connect the monodromy action to the side
permutations defined in Section 5. Let p ∈ Polymt

d ( ) be a polynomial with
cvl(p) ⊂ and letQp be its regular value complex. The basepoint z = (xℓ, yb) ∈ Qp

is regular by construction and its d indexed preimages {z1, . . . , zd} are arranged in
counterclockwise order in the boundary of Pp (Definition 5.2). The connection
between the monodromy action of π1(Qp − cvl(p), z) on the preimages of z and
NCPermd is straightforward up to a choice of conventions.

Definition 11.7 (Monodromy and Qp). Permutations typically compose as func-
tions from right-to-left, while paths are often concatenated from left-to-right. To
reconcile this difference, the monodromy permutation is defined with a change
of direction. If γ is an oriented path based at z that represents an element of
π1(Qp− cvl(p), z), the monodromy permutation of γ is the permutation whose dis-
joint cycles list the indices of the preimages of z as they occur when the lifted paths
are traced in the opposite direction. This converts the right monodromy action de-
fined by oriented paths to a left action by monodromy permutations. The change
of direction ensures that left-to-right path concatenation matches right-to-left per-
mutation composition. For example, if V is a closed disk in Qp with z ∈ ∂V and
U = p−1(V) as its preimage in Pp, the clockwise loop around ∂V lifts to clock-
wise arcs in ∂U, but the monodromy permutation is the counterclockwise order in
which the indexed preimages of z occur in boundary cycles of the components of
U. Compare this with Example 4.21.

As an illustration, consider side surfaces and the associated side permutations.

Lemma 11.8. For each polynomial p ∈ Polymt
d ( ) the d-cycle δ = (1 2 · · · d)

can be factored as δ = πL
i · πR

i for each i ∈ [k], and as δ = πT
j · πB

j for each j ∈ [l].

Proof. Let VL
i and VR

i the be left and right side surfaces of Q determined by the
arc αi. Let γ be the clockwise path around Qp based at z, let γL be the clockwise
path around ∂Vi based at z, and let γR be the path from z to bi in B, clockwise
around ∂VR

i , and from bi back to z in B. The concatenation γL.γR is homotopic
to γ inside C \ cvl(p). The monodromy permutations of γL and γR are the side
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permutations πL
i and πR

i , and the monodromy permutation of γ is δ = (12 · · · d).
Finally the composition (πL

i )(π
R
i ) is δ, by the argument in Example 4.21. The

top-bottom case is nearly identical. □

The fact that permutation composition comes from concatenating clockwise
boundary cycles based at z explains the need to multiply top then bottom and
left then right. Lemma 11.8 extends to more general subsurfaces.

Definition 11.9 (Interval permutations). For each subinterval [xi1 , xi2 ] ⊂ Ip, the
interval subsurface VI

i1,i2
= VR

i1
∩VL

i2
is the subrectangle [xi1 , xi2 ]× Jp ⊂ Qp. For

each subinterval [yj1 , yj2 ] ⊂ Jp, the interval subsurface VJ
j2,j1

= VT
j ∩ VB

j′ is the

rectangle Ip × [yj1 , yj2 ] ⊂ Qp. Note that the order of the subscripts j1 < j2 have
been switched in the notation VJ

j2,j1
to reflect the counterclockwise order that ℓj2

and ℓj1 occur in the boundary cycle ∂Qp. This swap simplifies the statement of
Lemma 11.11 below. The preimage subsurfaces are denoted UI

i1,i2
= p−1(VI

i1,i2
)

and UJ
j2,j1

= p−1(VJ
j2,j1

). Since many of these subsurfaces do not contain the

basepoint z, we connect VI
i1,i2

to z with the portion of B from z to bi1 , and we

connect VJ
j2,j1

to z with the portion of L from z to ℓj1 . In particular, the clockwise

loop around ∂VI
i1,i2

based at z via B is the concatenation of the path from z to

bi1 in B, the clockwise loop around ∂VI
i1,i2

, and the return path from bi1 to z in

B. The monodromy permutation for this path is the interval permutation πI
i1,i2

=

Perm([λI
i1,i2

]) of the interval partition [λi1,i2 ]
I = NCPartB(UI

i1,i2
). Similarly, the

clockwise loop around VJ
j2,j1

based at z via L is the concatenation of the path from

z to ℓj1 in L, the clockwise loop around ∂VJ
j2,j1

, and the return path from ℓj1 to
z in L. And the monodromy permutation for this path is the interval permutation
πJ
j2,j1

= Perm([λJ
j2,j1

]) of the interval partition [λj2,j1 ]
J = NCPartL(UJ

j2,j1
).

Remark 11.10 (Sides and intervals). Side surfaces are examples of subinterval
surfaces, meaning side partitions are examples of subinterval partitions and side
permutations are examples of subinterval permutations. For example, Qp = VI

ℓ,r =

VJ
t,b, so δ = πI

ℓ,r = πJ
b,t. Similarly, VL

i = VI
ℓ,i, VR

i = VI
i,r, VT

j = VJ
t,j and

VB
j = VJ

j,b, so πL
i = πI

ℓ,i, π
R
i = πI

i,r, π
T
j = πT

t,j and πB
j = πJ

j,b.

We have the following generalization of Lemma 11.8.

Lemma 11.11 (Factoring side permutations). For each triple i1 < i2 < i3 in
[k], there is a horizontal factorization πI

i1,i3
= (πI

i1,i2
)(πI

i2,i3
), and for each triple

j1 < j2 < j3 in [l], there is a vertical factorization πJ
j3,j1

= (πJ
j3,j2

)(πJ
j2,j1

).

Proof. The rectanglesVI
i1,i2

andVI
i2,i3

overlap on the vertical arc αi2 , so a clockwise

loop around VI
i1,i2

based at z via B, followed by a clockwise loop around VI
i2,i3

based at z via B, is homotopy equivalent in C \ cvl(p) to a clockwise loop around
Vi1,i3 based at z via B. The corresponding permutation factorization follows by
Definition 11.1. Similarly the rectangles VJ

j3,j2
and VJ

j2,j1
overlap on the horizontal

arc βj2 , and a clockwise loop around VJ
j3,j2

based at z via L, followed by a clockwise

loop around VJ
j2,j1

based at z via L, is homotopy equivalent in C \ cvl(p) to a

clockwise loop around VJ
j3,j1

based at z via L. □

Let σi = πI
i,i+1 be the permutation from a single edge subinterval of I, and let

τj = πJ
j+1,j be the permutation from a single edge subinterval of J. We call these
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basic horizontal side permutations and basic vertical side permutations respectively.
In this language we have the following corollary where we have factored horizontally
and vertically as much as possible.

Corollary 11.12 (Side constellations). For each polynomial p ∈ Polymt
d ( ) the d-

cycle δ can be factored into basic horizontal side permutations δ = πL
1 ·σ1·σ2 · · ·σk−1·

πR
k with corresponding horizontal side constellation [πL

1 σ1 σ2 · · · σk−1 πR
k ], and

into basic vertical side permutations δ = πT
l · τl−1 · · · τ2 · τ1 · πB

1 with corresponding
vertical side constellation [πT

l τl−1 · · · τ2 τ1 πB
1 ].

Proof. By Lemma 11.11 we have δ = πI
ℓ,r = (πI

ℓ,1)(π
I
1,2)(π

I
2,3) · · · (πI

k−1,k)(π
I
k,r) from

the edges of Ip, and δ = πJ
t,b = (πJ

l,1)(π
J
l,l−1) · · · (πJ

3,2)(π
J
2,1)(π

I
1,b) from the edges of

Jp. The statement simply uses simpler names for the factors (Remark 11.10). □

When the critical values of a permutation have distinct real or distinct imaginary
parts, one side chain determines the monodromy.

Remark 11.13 (Side constellations and monodromy). Let p ∈ Polymt
d ( ) be a

polynomial. If the critical values in cvl(p) have distinct real parts, then the left
side chain determines the monodromy of p. In fact, the loops based at z around
the single edge subsurfaces VI

i,i+1 which contain a (necessarily unique) critical
value are a basis for the free group π1(Qp \ cvl(p), z). In particular, the (k + 2)-
tuple [πL

1 σ1 σ2 · · · σk πR
k ] is almost a constellation of permutations encoding the

monodromy map (Definition 11.2). When the left side of is regular, the first
column of Qp is regular, the first entry πL

1 is the identity permutation and it is not
needed. When the right side of is regular, the last column ofQp is regular, the last
entry πR

1 is the identity permutation and it is not needed. Once any initial and/or
final identity permutations are removed, what remains is the tuple of permutations
that encode the monodromy action. Similarly, if the critical values in cvl(p) have
distinct imaginary parts, then the bottom side chain determines the monodromy of
p. The argument is analogous.

12. Intervals and Theorem A

This section introduces and analyzes a metric cell structure on Polymt
d ( ),

thereby proving Theorem A. Let = I = [xℓ, xr] be a closed interval in R, so
that ( )n = In is an n-cube. Recall that the space Multn( ) = Multn(I) is a
standard n-orthoscheme (Definition 6.9). We begin with an example illustrating
how to go from a multiset in to a point in a face of this simplex.

Example 12.1. Let I = [xℓ, xr] be an interval, and let M = x3
ℓx

4
1x

1
2x

2
3x

1
r be an

11-element multiset in I. The multiset M labels a point in the 11-dimensional
orthoscheme Mult11(I), and we can separate out the metric and combinatorial
information that M contains. There are 3 points C = {x1, x2, x3} in the interior
of I, and a 5-tuple m = [3 4 1 2 1] that records the multiplicities of the 5 vertices
of the 3-subdivided interval IC . The open 3-simplex containing the point labeled
by M is determined by the 5-tuple m and the exact point in this open 3-simplex is
determined by location of the 3-element set C in the interior of I. See Figure 30.

Definition 12.2 (Multisets in an interval). An arbitrary element M ∈ Multn( )
with = I = [xℓ, xr] can be written in the form M = xmℓ

ℓ xm1
1 · · ·xmk

k xmr
r . It can

also be split into two pieces of information. Adding the elements of M as vertices of
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xℓ x1 x2 x3 xr
[3 8] [7 4] [8 3] [10 1]

3 4 1 2 1

Figure 30. The multiset M = x3
ℓx

4
1x

1
2x

2
3x

1
r ∈ Mult11(I) labels

a point in a 3-dimensional face of the 11-dimensional simplex
Mult11(I). The 3-dimensional face is determined by the linear
composition m = Comp(M) = [3 4 1 2 1] and the four vertex
labels [3 8], [7 4], [8 3] and [10 1] below m in the linear composi-
tion order. The exact point in this open 3-simplex is determined
by location of the 3-element set C = {x1, x2, x3} in I. The ver-
tices below the linear composition are shown superimposed on the
4 edges of the 3-subdivided interval IC .

I creates a subdivided interval IC , where C = {x1, . . . , xk} = Set(M) ∩ I records
the elements of M in the interior of I indexed in the left-to-right order they occur
(Definition 3.2). There is also a (k+2)-tuple m = [mℓ m1 · · · mk mr] that records
the multiplicities of the vertices of IC in the multiset M , listed in the same left-to-
right order. We say m = Comp(M) is the linear composition of M . Since there
need not be elements of M at either end of I = , we have mℓ,mr ≥ 0, but
mi > 0 for i ∈ [k]. The linear composition m of length k + 2 determines the open
k-simplex of the n-orthoscheme Multn( ) and the choice of a k-element subset
C ⊂ I specifies a point in that open k-simplex. Note that M can be reconstructed
from C and m.

Figure 31 shows a standard 3-dimensional orthoscheme Mult3(I) with the linear
compositions that label its faces. The face poset of simplex Multn( ) is the finite
poset of linear compositions of n.

Definition 12.3 (Linear compositions). A linear composition of n with length k+2
is a row vector m = [mℓ m1 · · · mk mr] of sum n with integers mℓ,mr ≥ 0 and
mi > 0 for i ∈ [k]. For k > 0, an elementary merge of m replaces two adjacent
entries with their sum. This produces a new linear composition of n of length
(k − 1) + 2 = k + 1. Let Compn( ) denote the set of all linear compositions of
n together with the partial order m ≥ m′ if there is a sequence of elementary
merges that starts at m and ends at m′. The graded poset Compn( ) has a
unique maximal element [0 1 1 · · · 1 0] and n+ 1 minimal elements [mℓ mr] with
mℓ,mr ≥ 0 and mℓ +mr = n.

Multisets in an interval and the corresponding linear compositions are explored
with more detail in [DM24].

Remark 12.4 (Stratified cell structure). Let Comp : Multn( ) → Compn( ) be
the map that sends M 7→ Comp(M) (Definition 12.2). The Comp map determines
the simplicial cell structure on Multn( ) in the sense that M1 and M2 belong to
the same open simplicial face if and only if Comp(M1) = Comp(M2). Moreover,
since Shape(M) is the multiset of positive entries in Comp(M), the simplicial
cell structure is a stratified cell structure in the sense of Definition 7.19. As a
consequence there is an induced cell structure on Polymt

d ( ) and the LL map
becomes a cellular map LL : Polymt

d ( ) → Multn( ). Since the generic degree
is dd−2 (Theorem 7.3), the cell structure on Polymt

d ( ) is built out of dd−2 standard
n-orthoschemes. There is also an induced simplicial cell structure on the n-cube
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[0 3] [1 2]

[2 1]

[3 0]

[0 1 2]

[1 1 1]

[2 1 0]
[0 3 0]

[0 2 1]

[1 2 0]

Figure 31. The faces of the 3-orthoschemeMult3( ) have linear
composition labels. The linear composition labels of its 0-cells and
1-cells are shown. The open 3-cell has label [0 1 1 1 0] and the four
2-cells have labels [0 1 1 1] (bottom), [0 1 2 0] (front), [0 2 1 0]
(back), and [1 1 1 0] (right). Its spine is the thick path from [0 3]
to [1 2] to [2 1] to [3 0].

Polymt
d ( ) Multn( ) ( )ndd−2 n!

Figure 32. Three cell complexes related to a closed interval ,
all with simplicial orthoscheme metrics. The LL map on the left
and the Mult map on the right are cellular maps with respect to
these cell structures.

( )n that turns the Mult map into a cellular map. This is the typical subdivision
of the n-cube into n! standard n-orthoschemes that are permuted by the symmetric
group action. See Figure 32.

We are now ready to prove Theorem A.

Theorem 12.5 (Theorem A). The space Polymt
d ( ) of polynomials with critical

values in a closed interval (with the stratified Euclidean metric) is isometric to the
order complex |NCPartd|∆ (with the orthoscheme metric).

Proof. Let be a closed rectangle Q′ = I′ × J′ = , let be I′ × {y1} for some

y1 ∈ J′, and let GeoCom : Polymt
d ( ) → |NCPermL

d |∆ be the GeoCom map
of Definition 5.12 with the domain restricted to the subspace Polymt

d ( ) and the
range projected onto the first factor. We show that this version of the GeoCom
map is a bijective cellular homeomorphism. The cellular nature of the map is im-
mediate from the way the cell structures were defined on the domain and range. In
particular, different polynomials in the same cell differ only in their barycentric co-
ordinates and these coordinates are used in all three spacesMultn( ), Polymt

d ( )

and |NCPermL
d |∆. This also shows that the local metrics are preserved.

To see thatGeoCom is surjective, note that the image contains at least one point
in each of the dd−2 open top-dimensional cells of |NCPermd|∆ by Remark 11.4,
it contains all of these points because the map is cellular, and it contains the
union of the closed top-dimensional cells because the image is compact and thus
closed (Proposition 10.8). Finally, every point in |NCPermd|∆ is in the image,



GEOMETRIC COMBINATORICS OF POLYNOMIALS II 69

because every point is in the boundary of a top-dimensional cell. This is the order
complex version of the fact that every chain of noncrossing permutations extends
to a maximal chain.

To see that GeoCom is also injective, suppose p, q ∈ Polymt
d ( ) have the

same image GeoCom(p) = GeoCom(q). This means that p and q lie in the same
simplex of Polymt

d ( ) and have the same left side chains, which means that p
and q have the same monodromy (Remark 11.13). Moreover, the multiplicity of
the unique critical value in an edge of I′p is determined by the absolute length of
the basic horizontal side permutations σi (Corollary 11.12), so cvl(p) and cvl(q)
have the same linear composition m. Next, the fact that p and q are sent to the
same point in this simplex means that they have the same barycentric coordinates.
The barycentric coordinates encode relative widths (Definition 3.2) and we can use
these to reconstruct the locations of the critical values in I′. Since p and q have
the same set of critical values with the same multiplicities, we have cvl(p) = cvl(q)
as multisets. By Proposition 11.6, p = q and GeoCom is injective. Finally, as a
bijective map from a compact space to a Hausdorff space, it is a homeomorphism.

□

The metric simplicial complex Polymt
d ( ) = |NCPartd|∆ is also the branched

line complex Brm
d ( ) whose points are labeled by marked d-branched lines.

Definition 12.6 (Branched lines). Let I′ = [x′
ℓ, x

′
r] be an interval in R and let

I = [xℓ, xr] be an interval that contains I′ in its interior. For each polynomial
p ∈ Polymt

d (I′), there is a preimage branched line p−1(I) which is a metric banyan
(Example 3.19). It is a single banyan rather than a banyan grove because the inter-
val I contains all of the critical values of p. The endpoints of I, being regular, have
d preimages each that can be marked / labeled as through they were representative
points on the left and right sides of a d-branched rectangle Pp. Let Brm

d (I′) be the
space of all such marked metric banyans / marked branched lines. The procedure
just described gives a map Polymt

d (I′) to Brm
d (I′). Next, from a marked metric

banyan, it is possible to read off the left side partitions and the relative widths of
the intervals between the critical values. In other words, the marked metric banyan
contains the same information as the corresponding point in |NCPartd|∆, and we
have a map Brm

d (I′) → |NCPartd|∆. Finally, Theorem A provides a map back
from |NCPartd|∆ → Polymt

d (I′). One can trace through the definitions of these
maps to see that they are consistent and thus all three are bijections. It is in this
sense that the space of monic centered degree-d polynomials with critical values in
a fixed interval is the same as the space of marked d-branched lines.

13. Circles and Theorem B

We now derive Theorem B from Theorem A. First, recall the definition of the
dual braid complex.

Definition 13.1 (Dual braid complex). The dual braid complex Kd is a quotient
space of the order complex |NCPermd|∆. Recall that there is an ordered k-simplex
in |NCPermd|∆ for each chain π0 < π1 < · · · < πk of noncrossing permutations.
The edge labels of this k-simplex are σi = π−1

i−1πi and the corresponding factoriza-

tion of δ = (1 2 · · · d) has constellation [πL σ1 σ2 · · · σk πR] where πL = π0 and
πR = (πk)

−1δ. The possibly trivial permutation πL determines the vertex where
the ordered k-simplex starts in |NCPermd|∆, and the possibly trivial permutation
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πR determines the vertex where it ends. The edge labels are nontrivial. In the
dual braid complex Kd, two simplices are identified if and only if they have the
same sequence of edge labels. The result is a ∆-complex with one vertex and dd−2

top-dimensional cells that are standard n-orthoschemes.

Definition 13.2 (Standard representatives). For every equivalence class of sim-
plices in |NCPermd|∆ that are identified to form one simplex in the dual braid
complex Kd, there is a standard representative where πR is the identity. Con-
cretely, if [πL σ1 σ2 · · · σk πR] is a constellation where πR is nontrivial, then its
standard representative is [πL

new σ1 σ2 · · · σk πR
new] where πR

new is the identity and
πL
new is δ · πR · δ−1 · πL.

Theorem 13.3 (Theorem B). The space Polymt
d ( ) of polynomials with critical

values in a circle is homeomorphic to a quotient of the complex Polymt
d ( ) by face

identifications. As a metric ∆-complex, Polymt
d ( ) is the dual braid complex Kd

with the orthoscheme metric.

Proof. Let be a closed horizontal interval in R. As is dragged around to
form a circle at time t = 1, the polynomials in Polymt

d ( ), with their mon-
odromy and critical value characterization, are dragged around to the polynomials
in Polymt

d ( ). This process is completely reversible except for polynomials with
critical values at both endpoints of = [xℓ, xr]. When p is a polynomial of this
type, its endpoint critical values are merged at time t = 1 and the correspond-
ing monodromy permutations around these critical values, defined by appropriate
paths based at z, are multiplied. In particular, if p has horizontal side constellation
[πL

1 σ1 σ2 · · · σk πR
1 ] (Corollary 11.12) then the final polynomial with one fewer

critical value has a monodromy constellation of the form [πL
new σ1 σ2 · · · σk πR

new]
where πR

new is the identity and πL
new is δ · πR

1 · δ−1 · πL
1 . The conjugation of πR

1

by δ represents a change of path surrounding the critical value at xr so that the
clockwise loop around xr concatenated with the standard clockwise loop around
xℓ is homotopic to a loop surrounding both which is dragged to a clockwise loop
around their merged critical value. Finally, the constellations label the faces of
Polymt

d ( ) and each particular point is encoded in the metric information of the
relative widths of the edges in I′p. Since the endpoint identification only changes
the monodromy and leaves the metric information unchanged, the induced iden-
tification on Polymt

d ( ) is an isometric face identification. It is also clear from
the labels that this is the same identification as that used to create the dual braid
complex (Definition 13.2). □

Definition 13.4 (Branched circles). Let U be a closed disk that contains in its
interior. We give U a minimal cell structure so that is a subcomplex. It has two
vertices, three edges and two 2-cells. There is one vertex v in and another vertex
u in ∂U. The rest of is an open edge as is the rest of ∂U. The third edge e
connects u and v. For any particular polynomial p ∈ Polymt

d ( ), the preimage ofU
is a nonsingular disk diagram and the preimages of u can be marked and cyclically
labeled by the set [d]. The preimage of is a metric cactus (Example 3.20).
We use the regular point u ∈ ∂U as the basepoint for the monodromy action on
the preimages of u and we call cyclically marked preimages of u a marking. Let
Brm

d ( ) be the space of all such marked metric cacti / marked branched circles.
The procedure just described gives a map Polymt

d ( ) to Brm
d ( ), and from each

marked metric cactus it is possible to read off the monodromy and to recover the
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Polymt
d (Q) Multn(Q) Qn

Polymt
d (I)×Polymt

d (J) Multn(I)×Multn(J) In × Jn

1

dd−2

n!

n!

1

(dd−2)2 (n!)2

Figure 33. Six complexes related to a rectangle = Q = I× J,
all with bisimplicial orthoscheme metrics. The horizontal maps
are LL maps and Mult maps and the vertical maps come from
deformation retracting onto the sides of . The numbers on the
arrows indicate the generic degree of these cellular maps.

map from the metric branched circle to , including the location and multiplicity
of the critical values. In particular, it is possible to recover the multiset cvl(p).
With the monodromy and the critical value multiset we recover the polynomial p.
Thus the map from polynomials to marked branched circles is injective and it is
not too hard to show that it is also onto. It is in this sense that the space of monic
centered degree-d polynomials with critical values in a fixed circle is the same as
the space of marked d-branched circles.

14. Rectangles and Theorem C

This section introduces and analyzes a metric cell structure on Polymt
d ( ),

thereby proving Theorem C. The cell structure and the method of proof are pat-
terned after the linear case.

Definition 14.1 (Bisimplicial cells). Let be a closed rectangle Q = I × J as in
Definition 3.6 where I and J are intervals of length s and t respectively. By focusing
on the real and imaginary coordinates separately, the product space ( )n = Qn can
be viewed as In × Jn, an n-cube of side length s times an n-cube of side length t.
If we quotient by the full action of Symn × Symn with the first symmetric group
acting on the real coordinates and second acting on the imaginary coordinates,
the quotient space is Multn(I) × Multn(J), a direct product of a standard n-
orthoscheme of side length s with a standard n-orthoscheme of side length t. We call
this an oriented bisimplex or an biorthoscheme when we are viewing it as a metric
object. The space Multn(Q) is an intermediate space where we only quotient by
the diagonal action of Symn on the two factor n-cubes. The cells of Multn(Q)
are orbits of cells in Qn. In particular, in these 2n-dimensional spaces, Qn with
its (n!)2 top-dimensional cells which are the product of two n-orthoschemes. and
Multn(Q) has n! top-dimensional biorthoschemes. This complete our description
of the righthand square of Figure 33.

To clarify the cell structure we focus on the projections onto I and J.

Definition 14.2 (Multisets in a rectangle). For each n-element multiset M ∈
Multn(Q), let C = ℜ(M) ∩ I with k = |C|, let D = ℑ(M) ∩ J with l = |D|,
and let IC , JD and QC,D be the corresponding subdivisions of I, J and Q. All of
the elements of M are at the vertices of QC,D and as in the linear case, we can
split M into a combinatorial part and a metric part. The combinatorial aspect is
a (k + 2)× (l + 2) grid is nonnegative integers that record the multiplicities of the
vertices of QC,D. The metric part are the numbers Bary(IC) and Bary(JD) which
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record the relative widths of the columns and rows of cells inQC,D respectively. The
combinatorics determine the open bisimplicial cell and the barycentric coordinates
determine the point in the cell. The numbers Bary(IC) determine the point in
the first simplex and the numbers Bary(JD) determine the point in the second
simplex.

Remark 14.3 (Cellular maps). Since varying the widths and heights of the rectan-
gles does not change the shape of the multiset, the cell structure described in Def-
inition 14.2 is a stratified cell structure on Multn(Q), and so by Definition 7.19 it
induces a stratified cell structure on Polymt

d (Q) built out of biorthoschemes, turn-
ing the horizontal LL map in the upper left part of Figure 33 into a cellular map.
The induced map from Polymt

d (Q) in the upper left to biorthoscheme Multn(I)×
Multn(J) is completely determined by the horizontal and vertical barycentric
coordinates. Next consider the LL × LL map from Polymt

d (I) × Polymt
d (J) to

Multn(I)×Multn(J). This is already known to be cellular by the results in Sec-
tion 12. Finally, the vertical map on the left is the GeoCom map of Section 5 with
the range relabeled using Theorem A. The definitions are consistent, this map is
also cellular and the lefthand square commutes.

To complete the proof of Theorem C we only need to show that the vertical
GeoCom map on the left-hand side is injective.

Theorem 14.4 (Theorem C). The space Polymt
d ( ) of polynomials with critical

values in a closed rectangle (with the stratified Euclidean metric) is isometric to a
subcomplex of |NCPermd|∆ × |NCPermd|∆ (with the orthoscheme metric).

Proof. Let be a closed rectangle Q′ = I′ × J′ = and note that the GeoCom
map is cellular and metric-preserving on each open cell by Remark 14.3. Once we
show it is injective, its image is a subcomplex and the proof is complete. To see
injectivity, suppose we are given a point GeoCom(p) in the interior of a product of

two orthoschemes in |NCPermL
d |∆ × |NCPermB

d |∆ that came from a polynomial
p ∈ Polymt

d ( ). This point can be expressed as a pair of side chains πL
1 < πL

2 <
· · · < πL

k and πB
1 < πB

2 < · · · < πB
l and the (ordered) barycentric coordinates

in each (ordered) factor simplex. The left noncrossing permutations πL
i can be

converted first to left noncrossing partitions [λi]
L (Definition 4.17) and then to

top-bottom matchings [µi]
TB (Proposition 4.15), which we can draw as noncrossing

multiarcs in a standard d-branched rectangle P, with the arcs of [µi]
TB connecting

the d points tm,i in the top sides {Tm} to the d points bm,i in the bottom sides {Bm}.
This is the multiarc α̃i. Similarly, the chain of noncrossing bottom permutations

πB
j allow us to draw the multiarc β̃j . Together this reconstructs the full 1-skeleton

of the regular point complex Pp. By adding in the bounded regions as 2-cells
we recover all of the regular point complex Pp. Next, we reconstruct the critical
point complex P′

p as the cellular dual of Pp, then the critical value complex Q′
p

and the critical complex map P′
p → Q′

p from P′
p (Definition 3.22). From the

critical complex map we also know the multiplicity of each vertex in Q′
p. This is

the combinatorial information contained in the multiset cvl(p). Together with the
barycentric coordinates, we can reconstruct the critical value multiset M = cvl(p).
Finally, the cellular critical complex mapP′

p → Q′
p determines the branched cellular

regular complex map Pp → Qp. From the d-sheeted cover between their 1-skeletons
one can read off the monodromy action. By Proposition 11.6 this means that we
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Figure 34. The left-right matching shown in the upper left and
the bottom-top matching shown on the upper right combine to
form the basketball in the middle.

can reconstruct p from its image under the GeoCom map, and the GeoCom map
is injective. □

From the generic degrees of the maps, it is clear that the subcomplex in the
image of the GeoCom map only contains dd−2 · n! of the (dd−2)2 top-dimensional
bisimplices. Here is one natural way to characterize which vertices, and more
generally which simplices are in this subcomplex.

Definition 14.5 (Basketballs). The vertices of Polymt
d ( ) correspond to polyno-

mials where the multiset cvl(p) is contained in the four corners of . The left and
bottom chains become single noncrossing permutations πL

1 and πB
1 , which encode

a top-bottom matching [µ1]
TB and a left-right matching [µ1]

LR, or more topolog-

ically the multiarc α̃1 and the multiarc β̃1, which are the preimage under p of a
regular vertical arc α1 and a regular horizontal arc β1. The lift of this regular
“plus sign” in must be d “plus signs” in the d-branched 4d-gon. This is illus-
trated in Figure 34. The resulting combinatorial structure is what Martin, Savitt
and Singer call a basketball [MSS07]. See [GS88, Sjo15] for more background and
[Sav09] for more on basketballs. As described in [MSS07, Theorem 2.8], basket-
balls are in one-to-one correspondence with the noncrossing partitions of [4d] in
which each block has size 4. They also show that the number of basketballs is the

Fuss–Catalan number C
(4)
d = 1

3d+1

(
4d
d

)
, and each is obtained from a polynomial

in the manner described here. Thus, the image of GeoCom is a subcomplex of

|NCPermL
d |∆ × |NCPermB

d |∆ with C
(4)
d vertices. More generally, a chain of left

side permutations and a chain of bottom side permutations describe a bisimplex in
the image of the GeoCom map if and only if for every choice of left permutation πL

i

and choice of bottom permutation πR
j , the combination encodes a pair of multiarcs

that form a basketball.

Definition 14.6 (Branched rectangles). Let = Q′ = I′×J′ be a closed rectangle
contained in the interior of a larger closed rectangle Q = I× J based at its bottom
left corner z and add an edge from z to the bottom left corner of Q′. This gives Q
a cell structure. For each polynomial p ∈ Polymt

d , the preimage disk P = p−1(Q)
receives a cell structure and it contains the metric critical value complex P′

p as a
subcomplex built out of Euclidean rectangles. There is also the natural labeling of
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B
R

L
B

R

L
B

R

L

Figure 35. A standard version of a left-right matching and a
compatible bottom-top matching, when the rectangle in C has been
moved by a point-preserving homotopy so that the left and right
sides nearly touch and the bottom side nearly encloses a disk in
the interior of the closed annulus about to be formed.

the preimages of z (Definition 5.2). We call this a marked d-branched rectangle. Let
Brm

d ( ) be the collection of all marked d-branched rectangles. As described in the
proof of Theorem C, the marked d-branched rectangle is sufficient information to
reconstruct p, and it is also not too hard to prove that every possible such marked
d-branched rectangle arises from some polynomial. It is in this sense that the space
of monic centered degree-d polynomials with critical values in a fixed rectangle is
the same as the space of marked d-branched rectangles.

15. Annuli and Theorem D

In this section we prove Theorem D by performing a gluing of into similar
to gluing of into in the proof of Theorem B in Section 13.

Theorem 15.1 (Theorem D). The space Polymt
d ( ) of polynomials with critical

values in a closed annulus is homeomorphic to a quotient of Polymt
d ( ) by face

identifications.

Proof. Let H : × [0, 1] → C be a nonsplitting homotopy that is point preserving
except at time t = 1 when it identifies the left and right sides to create a closed an-
nulus with the top side becoming the outer circle and the bottom side becoming
the inner circle. As described in Definition 9.8 this induces to a polynomial homo-

topy H̃n : Poly
mt
d ( )× [0, 1] → Polymt

d (C). For each polynomial p ∈ Polymt
d ( ),

we have continuously deforming polynomials pt = (h̃n)t(p) ∈ Polymt
d (ht( )). By

Proposition 10.2, this in turn induces a quotient of the space Polymt
d ( ) that be-

comes Polymt
d ( ). We can say something a bit more precise. The shape of the

multiset cvl(pt) changes at time t = 1 if and only if there are critical values at a
point in the left and right sides of at the same height—so they become one point at
time t = 1. When this happens, the corresponding monodromy permutations, from
appropriate loops based at a regular basepoint, are multiplied. Distinct points in
the same open bisimplex of Polymt

d ( ) only differ in the relative metrics assigned to
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the horizontal and vertical subdivisions. The identification process is independent
of these metrics which means that the quotient is by face identifications. □

Example 15.2. As described in the proof of Theorem D, there is a continuous
deformation from at time t = 0 to at time t = 1. This determines a contin-
uous deformation from a branched rectangle to a branched annulus. We illustrate
the process for a vertex of Polymt

d ( ). The left-right and bottom-top matchings
obtained by pulling back a “plus sign” in to a d-branched 4d-gon are shown in
Figure 34, along with the basketball formed by the union of both matchings. The
effect of the continuous deformation of into on this basketball is illustrated
in Figure 35, and this represents a vertex of Polyd( ). This is a “standardized”
version of what is happening topologically. For the actual continuously deforming
polynomial pt under the corresponding polynomial homotopy (Definition 9.8), there
is a more concrete version which has this cell structure. It starts with a standard
form like Figure 34, and ends near time t = 1 as an embedded complex in C in
which the left and right sides with matching subscripts are about to meet, as in
Figure 35.

Remark 15.3 (From rectangular to polar). The transition from focusing on the
rectangular coordinates of the critical values to focusing on their polar coordi-
nates involves continuously varying the collection of polynomials under considera-
tion using a polynomial homotopy. In particular, maintaining the same geometric
and combinatorial data means changing the polynomial under consideration. Con-
versely, keeping the polynomial constant means drastically changing the geometric
combinatorics. For example, polynomials might be in a lower dimensional cell if
there are coincidences in the coordinates of its critical values, but one can have
coincidences in one coordinate system without having them in the other.

Just as we can view Polymt
d ( ) as a subcomplex of |NCPartL

d | × |NCPartB
d |,

the proof above shows that Polymt
d ( ) is isomorphic to a subcomplex of the direct

product Kd × |NCPartB
d |, where Kd is the dual braid complex (Definition 13.1).

We call this subcomplex the (marked) branched annulus complex Brm
d ( ). Rather

than define it explicitly, we comment on standard names for its bisimplices and refer
the reader to the first article in this series [DM22].

Definition 15.4 (Standard representatives). For every equivalence class of bisim-
plices in the branched rectangle complex Brm

d ( ) that are identified to form one
bisimplex in the branched annulus complex Brm

d ( ), there is a standard represen-
tative where the right side of is regular. In particular, the vertices of the branched
annulus complex are labeled by polynomials p where the multiset cvl(p) lives in
the endpoints of the left side L of . By Theorem A applied to Brm

d (L), these are
indexed by noncrossing partitions and Brm

d ( ) has exactly Cd vertices, where Cd

is a Catalan number. The process of standardizing the pair of side chain labels of
a bisimplex is straightforward on the left side permutation chain. It is exactly as
described in Definition 13.2. The impact on the bottom side permutation chain,
however, is more difficult to characterize cleanly. See the discussion in [DM22].

Appendix A. A Proof of Theorem 7.14

This appendix derives Theorem 7.14 from Theorem B in [DM20]. In that article
all of the polynomials satisfy p(0) = 0, but here we use a slight generalization.
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Definition A.1 (Base Pair). Let Polym,b→c
d = {p ∈ Polym

d | p(b) = c} be the
subset of Polym

d sending b to c. We call b → c the point/value base pair for this

subspace. The polynomials in Polym,b→c
d are indexed by their critical points. For

example, if cpt(p) = zm1
1 · · · zmk

k , then p′(z) = d · (z − z1)
m1 · · · (z − zk)

mk and

p(z) = d ·
(∫ z

b

(w − z1)
m1 · · · (w − zk)

mk dw

)
+ c.

The space of monic centered polynomials is homemorphic to the space of monic
polynomials up to translation (Remark 7.6), and the space of monic polynomials
with a fixed base pair b 7→ c is a d-sheeted cover of these spaces, so long as we
restrict our attention to polynomials with critical values that avoid c.

Remark A.2 (Base Pairs and Covers). If c = {c}, then the restricted affine map

Aff : Polym,b→c
d (Cc) → Polymt

d (Cc) is a d-sheeted covering map. The restriction
to polynomials with critical values in Cc means that for these polynomials, c has
d distinct preimages. For each preimage there is a unique representative of the
translation equivalence class where this preimage is labeled b. Also note that since
the cover map preserves the shapes of the critical points and critical values, it

restricts to d-sheeted covering maps Aff : Polym,b→c
λ→µ (Cc) → Polymt

λ→µ(Cc).

The following definitions are slight variations of those in [DM20] and [BCN02].

Definition A.3 (cpt to cvl). Let b → c be a base pair, let m = (m1, . . . ,mk) be
a k-tuple of positive integers with n = m1 + · · ·+mk, and let zm = (z1, . . . , zk) be
a point in Ck where the subscript m reminds us that coordinates in zm come with
assigned multiplicities. Let

pb→c
m (z) = pb→c

m,zm
(z) = d ·

(∫ z

b

(w − z1)
m1 · · · (w − zk)

mk dw

)
+ c

be the unique monic polynomial with cpt(p) = zm1
1 · · · zmk

k that sends b to c. The

map θb→c
m : Ck → Ck, defined by sending each zm to

θb7→c
m (zm) = (θb 7→c

m,1 (zm), . . . , θb→c
m,k (zm)) = (pb→c

m (z1), . . . , p
b→c
m (zk))

takes the critical points of pb→c
m to the critical values of pb→c

m .

Theorem B of [DM20] describes a factorization of the determinant of the k × k
Jacobian matrix Jb 7→c

m , defined by (Jb→c
m )ij =

∂
∂zi

θb→c
m,j (zm) = ∂

∂zi
pb→c
m (zj).

Lemma A.4 (Invertibility). Let b → c be a base pair, let m = (m1, . . . ,mk) be a
k-tuple of positive integers with m1+ · · ·+mk = n, and let zm = (z1, . . . , zk) ∈ Ck.
The determinant of the Jacobian Jb→c

m of the map θb→c
m : Ck → Ck factors as follows:

detJb→c
m =

dk(
n

m1,...,mk

)
 ∏

j∈[k]

(b− zj)
mj


 ∏

i,j∈[k]
i ̸=j

(zi − zj)
mj

 .

Thus Jb→c
m is invertible if and only if z1, . . . , zk are distinct and not equal to b. In

particular, θb→c
m : Confk(Cb) → Ck is a local homeomorphism.

Proof. There have been two modifications compared to Theorem B in [DM20].
First, the polynomial pb→c

m has been multiplied by d so that pb→c
m is monic. This

adds a factor of d to every entry of the k-by-k matrix Jb→c
m and a factor of dk to the
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zm wm Confk(Cb) Ck

z w (Cb)[λ] C[λ]

z w Z W

p Polym,b→c
λ→µ (Cc)

[p] cvl(p) Polymt
λ→µ(Cc) Multµ(Cc)

[p] cvl(p) Polymt
λ→µ Multµ(C)

∼=

θb→c
m

∼=

θb→c
m

∼= ∼=
θb→c
[λ] θb→c

[λ]

θb→c
[λ] θb→c

[λ]

Mult

LL LL

LL LL

Figure 36. The local behavior of the stratified LL map is related
to the local behavior of the stratified cpt-to-cvl-map θb→c

m . In the
square between the second and third rows Z is the restriction of
(Cb)[λ] to the preimage of W = (Cc)[µ] under θb→c

[λ] . The spaces

Confk(Cb) ∼= (Cb)[λ] and Ck ∼= C[λ] in the top two rows are 2k-
dimensional manifolds and the other 7 spaces are 2ℓ-dimensional
manifolds, where k and ℓ are the number of distinct critical points
and critical values, respectively. Every arrow is an inclusion or a
local homeomorphism.

factored determinant. Next, the shift from base pair p(0) = 0 to base pair p(b) = c
introduces the constant b into the factorization. The constant c plays no role. □

The map θb→c
m can also be reformulated as a map between subspaces of Cn.

Remark A.5 (Subspaces of Cn). Let [λ] ⊢ [n] be a set partition with k blocks
indexed by the order they occur in the standard shorthand (Definition 1.4). For
z ∈ C[λ] ⊂ Cn, let zi be the common value of the coordinates indexed by the ith

block, let zm = (z1, . . . , zk), and let m = (m1, . . . ,mk) where mi is the size of the
ith block. For z ∈ C[λ] with [λ] = 124|3|57|6, we have z = (z1, z1, z2, z1, z3, z4, z3),
zm = (z1, z2, z3, z4) andm = (m1,m2,m3,m4) = (3, 1, 2, 1). The map from z 7→ zm
is an isomorphism C[λ] ∼= Ck (Proposition 6.6). To indicate that the domain and
range are replaced with the subspace C[λ] ⊂ Cn where [λ] is any set partition whose
ith block has sizemi, we replace the subscriptm on θb→c

m with [λ]. Under this home-
omoprhism, the subspace Confk(Cb) ⊂ Ck, where θb→c

m is a local homeomorphism,
becomes (Cb)[λ] ⊂ C[λ], where θb→c

[λ] is a local homeomorphism. See the top two

rows of Figure 36.

Every polynomial p is part of a commuting diagram as in Figure 36.

Remark A.6 (Commuting Maps). Let p be a monic degree-d polynomial with
critrical point shape λ = λ(p) ⊢ n and critical value shape µ = µ(p) ≥ λ. The
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equivalence class [p] lies in Polymt
λ→µ and the LL map send [p] to the mulitset M =

cvl(p) ∈ Multµ(C). For any c ̸∈ cvl(p) and any b ∈ p−1(c), [p] is in Polymt
λ→µ(Cc)

and p is in Polym,b→c
λ→µ (Cc). Next, let z be an n-tuple listing the n critical points

of p with the appropriate multiplicities and let [λ] = SetPart(z) ⊢ [n] be its
set partition. Note that z ∈ (Cb)[λ] by construction and its image, w = θb 7→c

[λ] (z)

is in W = (Cc)[µ] for some set partition [µ] ≥ [λ] whose shape is µ = µ(p) and
Mult(w) = cvl(p). We define Z as the restriction of (Cb)[λ] to the preimage

of W = (Cc)[µ] under θb→c
[λ] , and note that p can be reconstruction as p = pb→c

m .

Writing zm and wm for the images of z and w under the isomorphism from C[λ] to
Ck completes the construction of the commuting diagram containing the polynomial
p as shown in Figure 36.

Theorem A.7 (Stratified covering map). For all integer partitions λ, µ ⊢ n with
λ → µ, the restricted map LL : Polymt

λ→µ → Multµ(C) is a covering map.

Proof. We first show that the restricted map LL : Polymt
λ→µ → Multµ(C) is a local

homeomorphism. Let p be a representative of [p] ∈ Polymt
λ→µ and pick a base pair

b → c and an ordering of the n critical points of p to construct the maps in Figure 36
as described in Remark A.6. Since b ̸∈ cpt(p) and c ̸∈ cvl(p), the restriction to
LL : Polymt

λ→µ(Cc) → Multµ(Cc) in the penultimate row does not change the local
neighborhood of [p] in the domain or cvl(p) in the range. Next note that the map
Mult : W = (Cc)[µ] → Multµ(Cc) is a covering map (Theorem 6.19), and so is the

map Polyb→c
λ→µ(Cc) → Polymt

λ→µ (Remark A.2). Thus, if the two maps emerging
from Z are local homeomorphisms, so is the LL map in a neighborhood of [p]. The
space W = (Cc)[µ] is a 2ℓ-dimensional manifold inside the 2k-dimensional manifold

C[λ], where k and ℓ are the number of blocks in [λ] and [µ], or the number of
distinct critical points and distinct critical values, respectively. The space Z is the
preimage of the 2ℓ-dimensional manifold W under the local homeomorphism θb→c

[λ]

(Remark A.5), restricted to the open 2k-dimensional submanifold (Cc)[λ], which
makes it a 2ℓ-dimensional manifold mapped to W by a local homeomorphism.
Finally, the map from Z to Polyb→c

λ→µ(Cc) merely erases the indexing from the
critical points of p, so it is also a covering map. This shows that the LL map in the
bottom row is locally a homeomorphism. To show that it is, in fact, a covering map,
it suffices to note that it is a surjective local homeomorphism between Hausdorff
spaces with constant finite size point preimages (Remark 7.15). □
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[Hae91] André Haefliger, Complexes of groups and orbihedra, Group theory from a geometri-
cal viewpoint (Trieste, 1990), World Sci. Publ., River Edge, NJ, 1991, pp. 504–540.

MR 1170375

[Hat02] Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002.
MR 1867354

[HKS16] Thomas Haettel, Dawid Kielak, and Petra Schwer, The 6-strand braid group is

CAT(0), Geom. Dedicata 182 (2016), 263–286. MR 3500387
[Hua24] Jingyin Huang, Cycles in spherical deligne complexes and application to k(π, 1)-

conjecture for Artin groups, Preprint, 2024.

[Hur91] A. Hurwitz, Ueber Riemann’sche Flächen mit gegebenen Verzweigungspunkten,
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