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COMBINATORIAL DESCRIPTIONS OF MULTI-VERTEX
2-COMPLEXES

JON MCCAMMOND

Abstract. Group presentations are implicit descriptions of 2-
dimensional cell complexes with only one vertex. While such

complexes are usually sufficient for topological investigations of

groups, multi-vertex complexes are often preferable when the fo-
cus shifts to geometric considerations. In this article, I show how

to quickly describe the most important multi-vertex 2-complexes

using a slight variation of the traditional group presentation. As

an illustration, I describe multi-vertex 2-complexes for torus knot

groups and one-relator Artin groups from which their elementary

properties are easily derived. The latter are used to give an easy
geometric proof of a classic result of Appel and Schupp.

Some cell complexes are easy to describe: a graph with one vertex corre-
sponds to a set S indexing its edges and a one-vertex combinatorial 2-complex
can be constructed from an algebraic presentation 〈S | R〉. When one tries
to describe 2-complexes with multiple vertices, however, several issues arise.
First, there is no standard way to quickly describe a complicated 1-complex.
And second, even supposing such a 1-skeleton as given with edges oriented
and labeled by a set S, not all words over the alphabet S ∪ S−1 can be used
to describe closed paths, making it easy to list collections of words that are
incompatible with the given graph. In this article, we describe a simple proce-
dure that avoids both of these difficulties and requires only mild restrictions.
It constructs a multi-vertex link-connected combinatorial 2-complex from any
multiset of words, and every such complex can be constructed in this way.
Such a process is sufficient for most purposes since the only 2-complexes ex-
cluded are those that are homotopy equivalent to a nontrivial wedge product,
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138 J. MCCAMMOND

that is, those whose fundamental groups can be freely decomposed. After de-
scribing this procedure and establishing its main properties, sample applica-
tions are given that illustrate how multi-vertex complexes can make geometric
properties of groups more transparent, including a short geometric proof of
a classic result of Appel and Schupp [2]. On a final note, it is with great
pleasure that I dedicate this article to Paul Schupp for all of his wonderful
mathematics and for his inspiration over the years.

1. Standard 2-complexes

We begin by reviewing the standard method for creating a one-vertex com-
binatorial 2-complex from an algebraic presentation 〈S | R〉. Recall that CW
complexes are inductively constructed by attaching n-discs along their bound-
ary cycles to an already constructed (n − 1)-skeleton and that 1-dimensional
CW complexes are undirected graphs. Recall also that a map Y → X between
CW complexes is a combinatorial map if its restriction to each open cell of
Y is a homeomorphism onto an open cell of X and that a CW complex X is
combinatorial provided that the attaching map of each cell of X is combina-
torial for a suitable subdivision of its domain. In this article, all maps and cell
complexes are combinatorial unless otherwise specified. For a 2-complex, this
means that it can be viewed as the result of attaching polygons to a graph
using combinatorial maps.

Definition 1.1 (Polygons and 2-complexes). A polygon is a (closed) 2-disc
D

2 whose boundary cycle has been given the structure of a graph. When its
boundary cycle has combinatorial length n, it is called an n-gon. A 2-complex
X is constructed from a graph Γ and a collection P of disjoint polygons by
specifying for each n-gon in P a closed combinatorial path of length n in Γ
along which its boundary cycle should be attached. Let P denote the disjoint
union of polygons in P and note that P itself is a cell complex. Also note that
so long as X has no isolated vertices and every edge of Γ occurs in the image
of at least one attaching map, the complex X is a quotient of the complex
P and the quotient map P � X is a combinatorial map. When X satisfies
these minor restrictions, we say that X is a polygon quotient with quotient
map P � X .

A 2-complex with only one vertex is called a standard 2-complex and the
traditional way to quickly and efficiently describe it is via a presentation.

Definition 1.2 (Presentations). A presentation 〈S | R〉 consists of a set S
and a multiset of words R over the alphabet S ∪ S−1. (We say multiset rather
than set because repetitions are allowed.) The elements of S are generators
and the elements of R are relators.

Presentations and standard 2-complexes are essentially interchangeable.
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Theorem 1.3 (Standard 2-complexes). Every presentation 〈S | R〉 implic-
itly describes a standard 2-complex and every standard 2-complex can be con-
structed from a presentation.

Proof. To construct a standard 2-complex from a presentation 〈S | R〉, first
use the set S to build a one-vertex directed graph Γ whose edges are indexed
by S and note that combinatorial paths in Γ are in natural bijection with
words over the alphabet S ∪ S−1. Next, for each word of length n in R, we
attach an n-gon to Γ, identifying its (based and oriented) boundary cycle with
the combinatorial path of length n in Γ that corresponds to this word.

In the other direction, given a standard 2-complex X with 1-skeleton Γ,
one chooses orientations for the edges of Γ and indexes them by a set S. Then,
for each polygon attached to Γ, choose a base vertex in its boundary and an
orientation of its boundary cycle. The attaching map of this 2-cell can then
be encoded in the word corresponding to the closed combinatorial path in
Γ described by the image of this based and oriented boundary cycle. If R
denotes the collection of these words, it should be clear that the presentation
〈S | R〉 can be used to reconstruct the standard 2-complex X . �

When describing concrete examples, we use several simplifying conventions.
Uppercase roman letters are used to denote the inverse of their lowercase
equivalents in order to make words easier to parse and absorb. Thus, we
write abAB instead of aba−1b−1. We also allow relators to be given implicitly
via relations. A relation is an equation of the form r = s where r and s are
words over the alphabet S ∪ S−1 and the implicit relator is the word rs−1.
For example, the relation ab = ba refers implicitly to the relator abAB.

2. Multi-vertex 2-complexes

In this section, we introduce an alternative construction.

Definition 2.1 (Constructed by edge identifications). Let X be a 2-complex
that is a polygon quotient and let P � X be the corresponding quotient map
(Definition 1.1). A third cell complex Y , between P and X , can be defined
as follows. Identify pairs of 1-cells in P iff they are sent to the same 1-cell in
X , and identify them in the same fashion. For Y to be a cell complex certain
vertex identifications must also be made, but make only those identifications
that are forced by the edge identifications. The polygon quotient map P � X
thus factors into two combinatorial maps P � Y � X and we say that Y is
constructed from X by edge identifications. Finally, note that since P � Y is
a factor of P � X , the only vertices in P that can be identified in Y are those
with the same image in X .

In order to clarify under what conditions the map Y � X is a homeomor-
phism, we recall the notion of a vertex link.
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Definition 2.2 (Vertex links). Let X be a polygon quotient with quotient
map f : P � X . For each vertex u in X there is a 1-complex Link(u,X)
called the link of u in X . Intuitively, it is the boundary of an ε-neighborhood
around u in X , but in the absence of a metric, one can also define it as follows.
Start with a distinct closed edge for each vertex v in P and associate its two
endpoints with the two ends of edges attached to v. Next, restrict attention to
those closed edges associated with vertices v with f(v) = u. Finally, identify
the endpoints of the closed edges iff the corresponding ends of edges in P
are identified under the quotient map f . The result is the graph Link(u,X).
We say that X is a link-connected 2-complex when for every vertex u in X ,
Link(u,X) is a connected graph.

Proposition 2.3 (Identifying vertices). Let X be a polygon quotient with
quotient map f : P � X and let Y be the complex constructed from X by
edge identifications. If v and v′ are vertices in P with f(v) = f(v′) = u in
X , then v and v′ are identified in Y iff the edges of Link(u,X) corresponding
to v and v′ belong to the same connected component. As a consequence Y is
always link-connected and the map Y � X is a homeomorphism iff X itself is
link-connected.

Proof. Both directions of the first assertion are straightforward. If the
corresponding edges belong to the same connected component, then there is
a finite length path connecting them in the link and this path encodes a finite
sequence of individual edge identifications that force v and v′ to be identified
in Y . Conversely, identifying vertices iff the corresponding edges belong to the
same connected component of the link produces an intermediate cell complex
in which all the edge identifications can be performed with no further vertex
identifications. Thus, no additional vertex identifications are forced.

Next, note as a consequence of the first assertion that the vertex links of
Y are connected components of vertex links of X . Thus, Y is link-connected.
Moreover, when X is link-connected, the map Y � X is bijective on ver-
tices and an isomorphism on vertex links and it quickly follows that it is
a homeomorphism. Conversely, if X has a single disconnected vertex link,
then distinct vertices of Y are identified in X and the map Y � X not a
homeomorphism. �

Now that these properties have been established, we turn our attention to
constructing a link-connected 2-complex from a multiset of words.

Definition 2.4 (Combinatorial descriptions). Let S be a set and let R
be a nonempty multiset of words over the alphabet S ∪ S−1. The list [R]
is called a combinatorial description and square brackets are used instead of
angle brackets to highlight that this is not a traditional presentation. The
elements of R are still called relators and the same simplifying conventions
remain in effect.
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Our main result is that combinatorial descriptions and link-connected 2-
complexes are essentially interchangeable.

Theorem 2.5 (Link-connected 2-complexes). Every combinatorial descrip-
tion [R] implicitly describes a link-connected 2-complex Y and every link-
connected 2-complex Y can be constructed from a combinatorial description.

Proof. Let [R] be a combinatorial description, let S be the set of letters
that occur in the relators in R, and let X be the standard 2-complex described
by the presentation 〈S | R〉. Because of the definition of S, X is a polygon
quotient and we can define Y as the complex constructed from X by edge
identifications. By Proposition 2.3 Y is link-connected. Alternatively, and
more directly, we can proceed as follows. First, let P be a disjoint union of
polygons indexed by the words in R so that words of length n in R correspond
to n-gons. Next, orient and label the edges in the boundary cycle of each poly-
gon according to its corresponding word. (Using the standard 2-complex X
this can be done by pulling back the labels and orientations of the edges in the
one-vertex graph Γ derived from S through the attaching maps of the 2-cells
of X .) Finally, rather than using the labeled oriented edges of P to identify
how these boundary cycles should be attached to Γ, we use this information
instead to identify which of these edges should be identified with each other.
In particular, Y is the quotient of P which identifies edges according to label
and orientation, and which identifies vertices iff the identification is necessary
so that the quotient remains a cell complex.

In the other direction, given a link-connected 2-complex Y , with 1-skeleton
Γ, one chooses orientations for the edges of Γ and indexes them by a set S.
Then, for each polygon attached to Γ, choose a base vertex in its boundary
and an orientation of its boundary cycle. The attaching map of this 2-cell can
then be encoded in the word corresponding to the closed combinatorial path
in Γ described by the image of this based and oriented boundary cycle. If R
denotes the collection of these words, it should be clear that the combinatorial
description [R] can be used to reconstruct a link-connected 2-complex that is
equal to Y by Proposition 2.3. �

When a combinatorial description [R] and a link-connected 2-complex Y
are related in this way we say Y is the complex constructed from [R] and [R]
is a combinatorial description of Y . Note that we use the word “combinato-
rial” rather than “algebraic” since the letters in S correspond to edges with
possibly distinct endpoints. In particular, they need not be closed loops and
thus do not have a natural algebraic interpretation in the fundamental group
of Y . The distinction between combinatorial descriptions and presentations
is highlighted by the following example.

Example 2.6 (Descriptions vs. presentations). The 2-complex constructed
from the combinatorial description [abcABC] (or equivalently [abc = cba])
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is a torus with two vertices and thus its fundamental group is Z
2. (More

generally, any combinatorial description in which every letter occurs exactly
twice—in either orientation—corresponds to a closed surface.) The presenta-
tion 〈a, b, c | abc = cba〉, on the other hand, corresponds to a quotient of this
torus with its two vertices identified. Since it is homotopy equivalent to a
wedge product of a torus and a circle, its fundamental group is Z

2 ∗ Z.

3. Wedge products

Standard 2-complexes are considered sufficiently flexible for most purposes
since every connected 2-complex X is homotopy equivalent to a standard
2-complex; one simply selects a spanning tree in the 1-skeleton of X and col-
lapses it to a point. In this section, we show that link-connected 2-complexes
are nearly as flexible by establishing the following result.

Theorem 3.1 (Splitting 2-complexes). Every group is the fundamental
group of a wedge product of circles and link-connected 2-complexes.

Proof. Let G be a group, let X be a standard 2-complex with G as its
fundamental group, and let L = Link(∗,X) where ∗ is the unique vertex of X .
The proof proceeds by repeatedly modifying X using a series of homotopy
equivalences. An illustration of the process is shown in Figure 1. When
the link L is connected, there is nothing to prove, so suppose not and let I
and J be sets that index the connected components of the link L and the
connected components of X \ { ∗ }, respectively. Note that since the link L
can be viewed as the boundary of an ε-neighborhood of ∗ in X , there is a
well-defined function f : I � J .

Figure 1. An illustration of the homotopy equivalences used
to convert an arbitrary 2-complex into a wedge product of
circles and link-connected 2-complexes.
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We construct a new 2-complex Y by pulling the connected components of
L in different directions. More specifically, start with a tree T that has 0-cells
indexed by I � {∗} and an edge ei from v∗ to vi for each i ∈ I . The rest of Y
is built by adding a 1-cell or 2-cell to T for each 1-cell and 2-cell in X in such
a way that the complex obtained by contracting T to a point is equal to X .
Concretely, for each 1-cell of X we add a 1-cell to T with each end attached
to the vertex vi in T where i ∈ I indexes the component of L through which
this end approaches ∗ in X . This completes the 1-skeleton.

For each 2-cell of X , we attach a 2-cell to Y (1) along the corresponding
sequence of edges. Because of the way the edges of X were attached to T ,
the old closed combinatorial paths in the 1-skeleton of X correspond to closed
combinatorial paths in the 1-skeleton of Y . More specifically, because paths
of length 2 in the boundary cycles of 2-cells create edges in L, the ends of
these adjacent edges belong to the same component i, their lifts are attached
to the same vertex vi, and thus the new edges can be concatenated as before.
Since collapsing the contractible subcomplex T to a point converts Y into X ,
the two are homotopy equivalent.

The remaining steps are similarly straightforward. Since Y \ T is homeo-
morphic to X \ {∗} under the quotient map, its connected components remain
indexed by J . For each j ∈ J select an edge ei with f(i) = j and then reattach
all unselected edges in T so that both of their endpoints are at v∗. See the
lower righthand corner of Figure 1. The result is homotopy equivalent to Y
since there is a path from the other endpoint to v∗ that travels through a
component of Y \ T and then back to v∗ along a selected edge, making the
original and altered attaching maps homotopic.

The last step is to contract the tree formed by the selected edges to a
point and to note that the result is a wedge product of circles and complexes
indexed by J . Every vertex link in a complex indexed by J is connected
since, by construction, it can be identified with a connected component of the
original link L. �

A corollary of Theorem 3.1 is that every group that does not split as a non-
trivial free product is the fundamental group of a link-connected 2-complex.
We conclude this short section with a concrete illustration of the proof.

Example 3.2 (Splitting 2-complexes). Let X be the quotient of two disjoint
2-spheres that identifies two distinct points in the first 2-sphere and three
distinct points in the second 2-sphere to a single point. The quotient X can
be given a cell structure so that it is a standard 2-complex, but the exact cell
structure is irrelevant. The link of the unique vertex ∗ in X has 5 connected
components and X \ { ∗ } has 2. In other words, |I| = 5 and |J | = 2. Figure 1
illustrates the sequence of steps used to show that X is homotopy equivalent
to S

2 ∨ S
2 ∨ S

1 ∨ S
1 ∨ S

1.
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4. Torus knots

Having established properties of link-connected 2-complexes and their com-
binatorial descriptions, we now turn our attention to examples that illustrate
the benefits of using multi-vertex 2-complexes. We begin with torus knots
and torus knot groups.

Definition 4.1 (Torus knots). The 3-sphere has a standard genus one
Heegaard splitting into two solid tori with a common torus boundary and any
simple closed curve that embeds in this common torus is called a torus knot.
The essential curves on this torus that bound discs in one solid torus or the
other provide a canonical basis for the first homology of the torus and torus
knots can be classified by the element of first homology they represent. In
particular, for every relatively prime pair of integers p and q there is a knot
K called a (p, q)-torus knot corresponding to a (p, q)-curve on this separating
torus. The fundamental group of the complement of K is the corresponding
torus knot group Tor(p, q) and a presentation of this group is 〈a, b | ap = bq 〉.
Although torus knots are only defined when p and q be are relatively prime,
the presentation makes sense for arbitrary pairs of integers m and n and we
extend the definition of Tor(m,n) accordingly.

Let X = Xm,n be the standard 2-complex of the standard presentation of
Tor(m,n), i.e., 〈a, b | am = bn〉. Although the presentation of a torus knot
group is extremely simple, the global structure of the universal cover of X is
not immediately obvious. The situation is much clearer if we consider the two
vertex 2-complex Y = Ym,n corresponding to the combinatorial description
[amt = tbn]. The 2-cells and the underlying graphs of the complexes X4,5

and Y4,5 are depicted in Figure 2. That X and Y are two 2-complexes with
the same fundamental group is clear since the edge labeled t in Y is always
embedded and contracting it to a point yields X .

As mentioned above, the main benefit of using Y instead of X as a space
with fundamental group Tor(m,n) is that the universal cover of Y is much
easier to visualize in its entirety. First, add a metric to the polygon used
to construct Y . As is hinted in Figure 2, we turn it into a metric rectangle
with right angles at the four endpoints of the two edges labeled t and with
no other sharp corners. To make the edge lengths match up, we make the
a edges length n and the b edges length m. In the universal cover, these
rectangles glue together along the t-edges to produce vertical strips that are
in turn glued together in a tree-like fashion. In fact, the universal cover ˜Y
can be described as a metric direct product of a tree T and a copy of the
real line R. See Figure 3. If we let K = Km,n denote the complete bipartite
graph with m vertices of one type and n vertices of the other type, then the
tree T is the universal cover of K. In particular, T is biregular in that every
vertex has valence m or n and every edge connects a vertex of valence m to a
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Figure 2. The 2-cell on the left attached to the graph on
the left and the 2-cell on the right attached to the graph
on the right are both 2-complexes with fundamental group
Tor(4,5). Contracting the edge t shows that the two spaces
are homotopy equivalent.

Figure 3. A portion of the universal cover of Y4,3.
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vertex of valence n. As usual with covering spaces, the group Tor(m,n) acts
freely and cocompactly by isometries on the metric space ˜Y = T × R, which is
contractible and nonpositively curved. Using the action of Tor(m,n) on this
space, it is straightforward to establish the following elementary properties of
torus knot groups.

Theorem 4.2 (Torus knot groups). If G = Tor(m,n) is a torus knot group
for positive integers m and n then: (1) the center of G is infinite cyclic gener-
ated by the element am = bn; (2) G is virtually a direct product of a free group
and an infinite cyclic group; (3) every nontrivial reduced word equivalent to
the identity in G contains a subword equal to am or bn or their inverses;
and finally, (4) every word equivalent to the identity in G can be reduced to
the identity by iteratively replacing am with bn, replacing bn with am, and
performing free reductions.

Proof sketch. Since the listed properties are relatively elementary and they
follow fairly quickly once the geometry of ˜Y and action of G is understood, we
merely sketch the proofs. First, note that because contracting the edge labeled
t in Y yields X , contracting the disjoint edges labeled t in ˜Y yields ˜X . Thus,
if we treat the edges labeled t in ˜Y as though they were contracted (without
actually contracting them) we can work with the geometrically pleasing 1-
skeleton of ˜Y to establish results about the 1-skeleton of ˜X , that is, the
Cayley graph of G with respect to the generating set {a, b}. For example,
in X , the edges labeled a and b label loops which represent elements of the
fundamental group, and as such they act on ˜X by deck transformations once
we have chosen a vertex in ˜X as our base vertex. Thus, they also represent
actions on ˜Y by deck transformations once we have chosen an edge labeled t
as our base edge.

Fix such an edge t and consider the column labeled with a’s at one endpoint,
the column labeled with b’s at the other and the vertical strip between them.
The deck transformation corresponding to the generator a shifts this a column
vertically and spins the rest of ˜Y around this column. After m such motions,
the entire complex ˜Y merely experiences a vertical shift. Similarly, the deck
transformation corresponding to the generator b shifts this b column vertically
and spins the rest of ˜Y around this column. After n such motions, the entire
complex ˜Y merely experiences a vertical shift. From these motions, one can
show that the only words that commute with a correspond to paths that
start at the basic t edge and end at another t edge with an endpoint on this a
column. Similarly, any word that commutes with b must correspond to a path
that starts at the basic t edge and ends at another t edge with an endpoint
on this b column. Thus, the only words that might be central are those that
correspond to a path that starts at the basic t edge and ends at another t edge
in the same vertical strip. As all these words represent rigid vertical shifts
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and are powers of the basic vertical shift represented by am = bn, the infinite
cyclic subgroup generated by this element is precisely the center of G.

To see (2), we note that there is a finite-sheeted cover of Y obtained by
identifying edges labeled t in ˜Y when they belong to the same vertical strip
and also identifying two vertical strips if they have their t edges at the same
set of heights. We then make the minimal additional identifications necessary
for the result to be a covering of Y . Geometrically, the result is a direct
product Km,n × S

1 with fundamental group F × Z where F is the free group
π1(Km,n) and since the cover is finite-sheeted, the subgroup this represents is
finite index.

Next, recall that a syllable of a word is a maximum subword that merely
repeats the same letter. For example, the word a5b2C4 has 3 syllables: a5,
b2, and C4 (i.e., c−4). For (3), we convert a reduced word equivalent to the
identity into a closed immersed path in the 1-skeleton of ˜X starting at its
base vertex and then finally to a closed immersed path in the 1-skeleton of
˜Y by traversing t edges when necessary in order to continue (which occurs
precisely at the breaks between syllables). Given such a path, we can look
at its projection into the tree T . The projection cannot be trivial since there
are no closed immersed paths that remain in a single a column or a single b
column. Also, the projected curve cannot remain immersed since T is a tree.
Thus, there is a point in the projected curve where it crosses an edge of T and
then immediately backtracks across the same edge. If we consider the portion
of the path in ˜Y that produces this behavior, we see a path that crosses a t
edge, travels up or down an a column (or b column) and then crosses back
across a t edge in the same vertical strip. Since the path in ˜Y is immersed,
the two t edges must be distinct and the portion between them must contain
am, bn or their inverses. Actually, this shows more than is claimed in the
statement of the theorem. Every reduced word equivalent to the identity in
G contains a syllable of the form ak where k is a multiple of m or b� where �
is a multiple of n.

Finally, to prove (4) we use the projection of the closed curve to T described
above and systematically use the relation am = bn to shrink the number of
edges that the projection crosses in T . We should also note that with the
lengths determined by the rectangular metric, this results in a nonlength
increasing solution for the word problem of the torus knot group G. �

We conclude our discussion of torus knot groups by noting that in addition
to being easier to visualize, the geometry of Y = Yp,q is more closely tied to
the geometry of the corresponding torus knot.

Remark 4.3 (Torus knots and the complex Y ). Let p and q be relatively
prime integers. There is a natural embedding of Y = Yp,q into the complement
of the (p, q)-torus knot K so that the complement of the knot deformation
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Figure 4. If an annulus has its boundary cycles attached to
two different circles with winding numbers m and n, respec-
tively, then the fundamental group of the resulting complex
is the torus knot group Tor(m,n).

retracts onto Y . We start by noting an alternate description of the space Y .
Imagine identifying the two edges of the polygon labeled t before performing
the other edge identifications. This shows that Y can be also constructed by
attaching an annulus to a pair of circles so that one boundary component is
attached to one of the circles with winding number m while attaching the
other boundary component to the other circle with winding number n. The
result is homeomorphic to Y . See Figure 4. To embed Y into S

3 \ K, we sent
the two circles to the core curves running through the centers of the two solid
tori. The annulus can then be embedded in S

3 and attached to the circles as
needed to form Y in such a way that it cuts through the boundary torus in
a (p, q)-curve that is parallel to but disjoint from the original (p, q)-curve K.
Finally, it is not too difficult to construct an explicit deformation retraction
from S

3 \ K to Y .

5. Solvable Baumslag–Solitar groups

Our next family of examples are the solvable Baumslag–Solitar groups.
Although these are groups where the standard 2-complex adequately encodes
their geometry, we include a very brief discussion of their basic properties so
that we can can refer to them in the next section.

Definition 5.1 (Baumslag–Solitar groups). The Baumslag–Solitar group
BS(m,n) is the group defined by the presentation 〈a, t | amt = tan〉. The
similarity between the Baumslag–Solitar group BS(m,n) and the torus knot
group Tor(m,n) should be clear. It too can be described as the fundamental
group of a space obtained by attaching the two boundary cycles of an annulus
to circles with winding numbers m and n. The difference is that this time
both boundary cycles are attached to the same circle.

A Baumslag–Solitar group is solvable (in the classical sense of that term) iff
m = n and this is also the case where the geometry is most pleasing. Let G =
BS(m,m) be a solvable Baumslag–Solitar group and let X be the standard
2-complex of the presentation 〈a, t | amt = tam〉. The one polygon involved
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can be given the structure of a rectangle as before and the universal cover
˜X has the structure of a tree T cross the reals. The tree T is a uniformly
m-branching tree. From this structure, one can compute the center of G, see
that G is virtually free-by-cyclic, solve the word problem in G and establish
basic properties of reduced words equal to the identity in G. In other words,
one can prove a theorem analogous to Theorem 4.2.

6. One-relator Artin groups

Our third family of examples is closely related to the two previous families.
Recall that an Artin group is defined by a presentation inspired by Artin’s
classical presentation for the braid groups [3, 4]. In particular, they are defined
by presentations in which every relation is one of Artin’s relations.

Definition 6.1 (Artin relations and Artin groups). Let (a, b)m be the word
of length m which starts with a and alternates between a and b. In symbols
(a, b)m = abab . . . with m letters total. For example, (a, b)2 = ab, (a, b)3 = aba
and (a, b)4 = abab. An Artin relation is a relation of the form (a, b)m = (b, a)m

with m > 1. Thus, for small values of m we have commutation ab = ba, the
braid relation aba = bab, and abab = baba for m = 4. An Artin group is a
group defined by a presentation in which every relation is an Artin relation
and there is at most one Artin relation for every distinct pair of generators.

The simplest Artin groups are those with only two generators and one
relation. Let Artm denote the one-relator Artin group defined by the presen-
tation 〈a, b | (ab)m = (ba)m〉 and let X = Xm be the corresponding standard
2-complex. As with torus knots, the global structure of the universal cover
of X is not immediately clear but there is a homotopy equivalent two-vertex
2-complex whose universal cover is much easier to visualize. The idea is to re-
place the Artin relation (a, b)m = (b, a)m with a similar relation that produces
a 2-complex whose 1-skeleton looks like the lower righthand side of Figure 5.
In this graph, it is possible to read the word (a, b)m and the word (b, a)m with-
out inserting any t edges, but t edges must be inserted at the two transitions
between the two words. Also note that the direction the t edge needs to be
crossed depends on the parity of m. Explicitly, when m is even we consider
the combinatorial description [(a, b)mt = t(b, a)m] and when m is odd we con-
sider the combinatorial description [(a, b)m = t(b, a)mt]. When these relations
are drawn as a rectangle similar to the one shown in Figure 5, the two t edges
are pointing in the same direction when m is even and opposite directions
when m is odd.

In both cases, let Y = Ym denote the corresponding two-vertex 2-complex.
As in our previous examples, the one polygon involved can be given a rec-
tangular metric (with right angles at the endpoints of the two t edges) under
which the universal cover ˜Y is a metric direct product of a uniformly m-
branching tree T and the reals. A portion of the universal cover for for Y4 is
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Figure 5. The 2-cell on the left attached to the graph on
the left and the 2-cell on the right attached to the graph
on the right are both 2-complexes with fundamental group
Art5. Contracting the edge t shows that the two spaces are
homotopy equivalent.

shown in Figure 6. From this structure, one can prove a theorem analogous
to Theorem 4.2.

Theorem 6.2 (One-relator Artin groups). If G = Artm is a one-relator
Artin group with m > 1 and z is the element of G represented by (a, b)m =
(b, a)m then: (1) the center of G is an infinite cyclic subgroup generated by z
when m is even and by z2 when m is odd; (2) G is virtually a direct product
of a free group and an infinite cyclic group; (3) every nontrivial reduced word
equivalent to the identity in G contains a subword equal to (a, b)m or (b, a)m or
their inverses; and finally, (4) every word equivalent to the identity in G can
be reduced to the identity by iteratively replacing (a, b)m with (b, a)m, replacing
(b, a)m with (a, b)m, and performing free reductions.

Proof sketch. The proofs of these properties are nearly identical to the ones
given for torus knots and they follow fairly quickly once the geometry of ˜Y
and action of G is understood. First, note that because contracting the edge
labeled t in Y yields X , contracting the disjoint edges labeled t in ˜Y yields
˜X . Thus, we once again treat the edges labeled t in ˜Y as though they were
contracted (without actually contracting them) allowing us to work with the
geometrically pleasing 1-skeleton of ˜Y to establish results about the 1-skeleton
of ˜X , that is, the Cayley graph of G with respect to the generating set {a, b}.
For example, in X , the edges labeled a and b label loops which represent
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Figure 6. A portion of the universal cover of Y4.

elements of the fundamental group, and as such they act on ˜X by deck trans-
formations once we have chosen a vertex in ˜X as our base vertex. Thus, they
also represent actions on ˜Y by deck transformations once we have chosen an
edge labeled t as our base edge. This time though, the deck transformations
corresponding to a and b are more complicated. The simple deck transforma-
tions are those associated with the words ab and ba. One of these stabilizes
the column attached to the beginning of our t edge, shifting it up two units
while rotating the rest of ˜Y around this column and the other performs a
similar action with respect to the column attached to the other end. After m
iterations of the first motion the entire complex experiences a pure vertical
shift with no twisting. Similarly after m iterations of the second motion. Any
element in the center of G must commute with both of these motions and one
can show that the possibilities are words that rigidly vertically shift the ver-
tical strip containing our base t edge. When m is odd, the smallest such shift
is represented by z2 = (ab)m = (ba)m but when m is even, the word (a, b)m

representing z, equal to (ab)m/2, also represents a rigid vertical shift and in
both cases these elements are indeed central in G.

To see (2), we construct a finite-sheeted cover of Y as before. First, identify
edges labeled t in ˜Y when they belong to the same vertical strip and are
oriented in the same direction, identify two vertical strips if they have their t
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edges at the same set of heights, and identify columns based on the parity of
the heights at which the a edges occur. Geometrically the result is a direct
product Γ × S

1, where Γ is a finite graph with two vertices and m edges
connecting them. Thus, its fundamental group F × Z where F is a free group
of rank m − 1 and since the cover is finite-sheeted, the subgroup this represents
is finite index in G.

For (3), we convert a reduced word equivalent to the identity into a closed
immersed path in the 1-skeleton of ˜X starting at its base vertex and then
finally to a closed immersed path in the 1-skeleton of ˜Y by traversing t edges
when necessary in order to continue. Given such a path, we can look at its
projection into the tree T . The projection cannot be trivial since there are
no closed immersed paths that remain in a single column and the projected
curve cannot remain immersed since T is a tree. Thus, there is a point in the
projected curve where it crosses an edge of T and then immediately backtracks
across the same edge. If we consider the portion of the path in ˜Y that produces
this behavior, we see a path that crosses a t edge, travels up or down a column
and then crosses back across a t edge in the same vertical strip. Since the path
in ˜Y is immersed, the two t edges must be distinct and the portion between
them must contain (a, b)m, (b, a)m or their inverses.

Finally, to prove (4) we use the projection of the closed curve to T de-
scribed above and systematically use the relation (a, b)m = (b, a)m to shrink
the number of edges that the projection crosses in T and note that this results
in a nonlength increasing solution for the word problem of G. �

The fact that one-relator Artin groups have properties similar to torus knot
groups and solvable Baumslag–Solitar groups is not accidental.

Remark 6.3 (Relations with previous examples). Let G be the one-relator
Artin group Artm and let Y be the corresponding two-vertex complex de-
scribed above with fundamental group G. If we identify the two edges labeled
t before carrying out the other identifications, we can reanalyze Y , depending
on the parity of m, as either a solvable Baumslag–Solitar group or a torus
knot group. More specifically, when m is even, identifying the two t edges
creates a torus with boundary cycles attached to the same circle. In par-
ticular, the Artin group Artm is isomorphic to solvable Baumslag–Solitar
group BS(m/2,m/2) when m is even. On the other hand, when m is odd,
identifying the two t edges creates a möbius strip whose boundary cycle is
attached to a circle with winding number m (Figure 7). Cutting the möbius
strip along its central curve shows that Artm is isomorphic to the torus knot
group Tor(2,m) when m is odd.

Note that from a topological perspective, all three classes of groups (torus
knot groups, Baumslag–Solitar groups, one-relator Artin groups) are extremely
simple as they only involve attaching annuli or möbius strips to one or more
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Figure 7. A Möbius band attached to a circle.

circles. It is thus somewhat surprising that they are treated separately and
that there does not exist a more uniform set of notations for these groups
and their 2-complexes. Finally, we conclude as promised with a short geomet-
ric proof of a key lemma used by Kenneth Appel and Paul Schupp in their
investigation of Artin groups of large and extra-large type.

Definition 6.4 (Large type and extra large type). As mentioned earlier,
an Artin group is a group G defined by a presentation in which every relation
is an Artin relation (a, b)m = (b, a)m and for every pair of generators there is
at most one such relation. If for every relation in the presentation, the integer
m is at least 3 then G is an Artin group of large type and if every integer m
is at least 4 then G is an Artin group of extra large type.

In order to analyze large and extra-large Artin groups using small cancel-
lation theory, they first needed to prove a key intermediate result specifically
about one-relator Artin groups. In particular, Appel and Schupp used a de-
tailed inductive analysis of possible van Kampen diagrams in order to establish
the follow result that occurs as Lemma 6 in [2].

Proposition 6.5 (Syllable counts). Every nontrivial cyclically reduced
word that is equal to the identity in Artm contains at least 2m syllables.

Proof. Let G be Artm, let X be standard 2-complex and let Y be the
two-vertex complex with fundamental group G described above. The proof
proceeds by counting breaks between syllables using the vertical projection
from Y to the tree T and the horizontal projection from Y to the real line R.
As in the proof of Theorem 6.2, we lift the nontrivial cyclically reduced word
equal to the identity in G to an immersed loop in the universal cover ˜X and
then to an immersed loop in the universal cover ˜Y . As argued above, the
projection to T is nontrivial and no longer immersed. Moreover, each time
the projection to T crosses an edge and immediately recrosses it in the other
direction, we can find a copy of the word (a, b)m or (b, a)m in ˜Y and each such
occurrence includes (m − 1) syllable breaks, that is, gaps between letters with
distinct generators on either side. Since any nontrivial path in a tree includes
at least two such backtracks, we have found 2(m − 1) = 2m − 2 syllable breaks.
The final two syllable breaks are located by projecting horizontally to the real
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line. The path in ˜Y projects to a path moving up and down the real line.
Because it is a closed loop, it attains a maximum and a minimum value. When
the path reaches its maximum value it must change columns in ˜Y (i.e., it must
cross a t edge) before continuing back down since the path in ˜Y is immersed.
This leads to a subword of the form aB or bA and to a syllable break that
was not previously counted. Similarly, local minima in the projection lead
to subwords of the form Ab or Ba and to a final syllable break that was not
previous counted. Because the closed path has at least 2(m − 1) + 2 = 2m
syllable breaks, it must contain at least 2m syllables. �

In [2], Appel and Schupp used this result to analyze Artin groups of extra-
large type and in [1] Appel extended the analysis to Artin groups of large type.
Roughly speaking, if you consider van Kampen diagrams over Artin groups
with respect to an infinite presentation that includes every nontrivial cyclically
reduced word in a subgroup generated by two of its generators, then the one
can always find a diagram where no two cells sharing an edge have boundary
cycles from the same two generator subgroup. Under these conditions, the
overlap between two cells consists of a single letter and thus lives within a
single syllable of the boundary word of the either cell. The large or extra-large
condition, combined with Proposition 6.5 means that these diagrams satisfy
the small cancellation conditions C(6) or C(8), respectively. Once the tools of
small cancellation theory are available, they are then able to establish many
foundational results for large and extra-large Artin groups. In their original
paper, Appel and Schupp needed to work a bit to establish Proposition 6.5.
The geometry of Y makes this proposition much more transparent.
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