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Abstract. In this article we study the curvature properties of the order
complex of a graded poset under a metric that we call the “orthoscheme
metric”. In addition to other results, we characterize which rank 4
posets have CAT(0) orthoscheme complexes and by applying this the-
orem to standard posets and complexes associated with four-generator
Artin groups, we are able to show that the 5-string braid group is the
fundamental group of a compact nonpositively curved space.

Barycentric subdivision subdivides an n-cube into isometric metric sim-
plices called orthoschemes. We use orthoschemes to turn the order complex
of a graded poset P into a piecewise Euclidean complex K that we call its
orthoscheme complex. Our goal is to investigate the way that combinatorial
properties of P interact with curvature properties of K. More specifically,
we focus on combinatorial configurations in P that we call spindles and
conjecture that they are the only obstructions to K being CAT(0).

Poset Curvature Conjecture. The orthoscheme complex of a bounded
graded poset P is CAT(0) iff P has no short spindles.

One way to view this conjecture is as an attempt to extend to a broader
context the flag condition that tests whether a cube complex is CAT(0). We
highlight this perspective in §7. Our main theorem establishes the conjecture
for posets of low rank.

Theorem A. The orthoscheme complex of a bounded graded poset P of
rank at most 4 is CAT(0) iff P has no short spindles.

Using Theorem A, we prove that the 5-string braid group, also known as
the Artin group of type A4, is a CAT(0) group. More precisely, we prove
the following.

Theorem B. Let K be the Eilenberg-MacLane space for a four-generator
Artin group of finite type built from the corresponding poset of W -noncrossing
partitions and endowed with the orthoscheme metric. When the group is of
type A4 or B4, the complex K is CAT(0) and the group is a CAT(0) group.
When the group is of type D4, F4 or H4, the complex K is not CAT(0).

The article is structured as follows. The initial sections recall basic results
about posets, complexes and curvature, followed by sections establishing the
key properties of orthoschemes, orthoscheme complexes and spindles. The
final sections prove our main results and contain some concluding remarks.

Date: September 25, 2009.
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1. Posets

We begin with elementary definitions and results about posets. For addi-
tional background see [2] or [12].

Definition 1.1 (Poset). A poset is a set with a fixed implicit reflexive,
anti-symmetric and transitive relation ≤. A chain is any totally ordered
subset, subsets of chains are subchains and a maximal chain is one that is
not a proper subchain of any other chain. A chain with n+ 1 elements has
length n and its elements can be labeled so that x0 < x1 < · · · < xn. A poset
is bounded below, bounded above, or bounded if it has a minimum element
0, a maximum element 1, or both. The elements 0 and 1 are necessarily
unique when they exist. A poset has rank n if it is bounded, every chain is
a subchain of a maximal chain and all maximal chains have length n.

Definition 1.2 (Interval). For x ≤ y in a poset P , the interval between x
and y is the restriction of the poset to those elements z with x ≤ z ≤ y and
it is denoted by P (x, y) or Pxy. If every interval in P has a rank, then P
is graded. Let x be an element in a graded poset P . When P is bounded
below, the rank of x is the rank of the interval P0x and when P is bounded
above, the corank of x is the rank of the interval Px1. In general, if every
interval in a poset P has a particular property, we say P locally has that
property.

Note that a poset is bounded and graded iff it has rank n for some n,
and that the rank of an element x in a bounded graded poset is the same as
the subscript x receives when it is viewed as an element of a maximal chain
from 0 to 1 whose elements are labelled as described above.

Definition 1.3 (Lattice). Let x and y be elements in a poset P . An upper
bound for x and y is any element z such that x ≤ z and y ≤ z. The
minimal elements among the collection of upper bounds for x and y are
called minimal upper bounds of x and y. When only one minimal upper
bound exists, it is the join of x and y and denoted x ∨ y. The definitions
of lower bounds and maximal lower bounds of x and y are similar. When
only one maximal lower bound exists, it is the meet of x and y and denoted
x ∧ y. A poset in which x ∨ y and x ∧ y always exist is called a lattice.

For later use we define a particular configuration that is present in every
bounded graded poset that is not a lattice.

Definition 1.4 (Bowtie). We say that a poset P contains a bowtie if there
exist distinct elements a, b, c and d such that a and c are minimal upper
bounds for b and d and b and d are maximal lower bounds for a and c. In
particular, there is a zig-zag path from a down to b up to c down to d and
back up to a. An example is shown in Figure 1.

Proposition 1.5 (Lattice or bowtie). A bounded graded poset P is a lattice
iff P contains no bowties.
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Figure 1. A bounded graded poset that is not a lattice.

Proof. If P contains a bowtie, then b and d have no join and P is not a
lattice. In the other direction, suppose P is not a lattice because x and y
have no join. An upper bound exists because P is bounded, and a minimal
upper bound exists because P is graded. Thus x and y must have more
than one minimal upper bound. Let a and c be two such minimal upper
bounds and note that x and y are lower bounds for a and c. If b is a
maximal lower bound of a and c satisfying b ≥ x and d is a maximal lower
bound of a and c satisfying d ≥ y, then a, b, c, d form a bowtie. We know
that a and c are minimal upper bounds of b and d and that b and d are
distinct since either failure would create an upper bound of x and y that
contradicts the minimality of a and c. When x and y have no meet, the
proof is analogous. �

Posets can be used to construct simplicial complexes.

Definition 1.6 (Order complex). The order complex of a poset P is a
simplicial complex |P | constructed as follows. There is a vertex vx in |P |
for every x ∈ P , an edge exy for all x < y and more generally there is
a k-simplex in |P | with vertex set {vx0 , vx1 , . . . , vxk

} for every finite chain
x0 < x1 < · · · < xk in P . When P is bounded, v0 and v1 are the endpoints
of |P |, and the edge e01 connecting them is its diagonal.

The order complex of the poset shown in Figure 1 has 6 vertices, 13 edges,
12 triangles and 4 tetrahedra. Since every maximal chain contains 0 and 1,
all four tetrahedra contain the diagonal e01.

Proposition 1.7 (Contractible). If a poset is bounded below or bounded
above, then its order complex is contractible.

Proof. If x is an extremum of P , then |P | is a topological cone over the
complex |P \ {x}| with vx as the apex of the cone. �

2. Complexes

Next we review the theory of piecewise Euclidean and piecewise spherical
cell complexes built out of Euclidean or spherical polytopes, respectively.
For further background on polytopes see [13] and for polytopal complexes
see [7].
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Definition 2.1 (Euclidean polytope). A Euclidean polytope is a bounded
intersection of a finite collection of closed half-spaces of a Euclidean space,
or, equivalently, it is the convex hull of a finite set of points. A proper
face is a nonempty subset that lies in the boundary of a closed half-space
containing the entire polytope. Every proper face of a polytope is itself a
polytope. In addition there are two trivial faces: the empty face ∅ and the
polytope itself. The interior of a face is the collection of its points that do
not belong to a proper subface, and every polytope is a disjoint union of
the interiors of its faces. The dimension of a face is the dimension of the
smallest affine subspace that containing it. A 0-dimensional face is a vertex
and a 1-dimensional face is an edge.

Definition 2.2 (PE complex). A piecewise Euclidean complex (or PE com-
plex ) is the regular cell complex that results when a disjoint union of Eu-
clidean polytopes are glued together via isometric identifications of their
faces. For simplicity we usually insist that every polytope involved in the
construction embeds into the quotient and that the intersection of any two
polytopes be a face of each. If there are only finitely many isometry types of
polytopes used in the construction, we say it is a complex with finite shapes.

A basic result due to Bridson is that a PE complex with finite shapes is a
geodesic metric space, i.e. the distance between two points in the quotient
is well-defined and achieved by a path of that length connecting them. This
was a key result from Bridson’s thesis [6] and is the main theorem of Chapter
I.7 in [7].

The PE complexes built out of cubes deserve special attention.

Example 2.3 (Cube complexes). A cube complex is a (connected) PE com-
plex K in which every cell used in its construction is isometric to a metric
cube of some dimension. Although it is traditional to use cubes with unit
length sides, this is not strictly necessary. The fact that faces of K are iden-
tified by isometries, together with connectivity, does, however, imply that
every edge has the same length and thus K is a rescaled version of a unit
cube complex.

In the same way that every poset has an associated cell complex, every
regular cell complex has an associated poset.

Definition 2.4 (Face posets). Every regular cell complex K, such as a PE
complex, has an associated face poset P with one element xσ for each cell σ
in K ordered by inclusion, that is xσ ≤ xτ iff σ ⊂ τ in K. As is well-known,
the operations of taking the face poset of a cell complex and constructing
the order complex of a poset are nearly but not quite inverses of each other.
More specifically, the the order complex of the face poset of a regular cell
complex is a topological space homeomorphic to original cell complex but
with a different cell structure. The new cells are obtained by barycentrically
subdividing the old cells.
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Definition 2.5 (Euclidean product). Let K and L be PE complexes. The
metric on the product complex K × L is defined in the natural way: if the
distance in K between x and x′ is dK and the distance in L between y and
y′ is dL, then the distance between (x, y) and (x′, y′) is

√
(dK)2 + (dL)2. It

is itself a PE complex built out of products of polytopes. More precisely, if
σ is a nonempty cell in K and τ is a nonempty cell in L, then there is a
polytope σ × τ in K × L. Conversely, every nonempty cell in K × L is a
polytope of this form.

Euclidean polytopes and PE complexes have spherical analogs.

Definition 2.6 (Spherical polytope). A spherical polytope is an intersection
of a finite collection of closed hemispheres in Sn, or, equivalently, the convex
hull of a finite set of points in Sn. In both cases there is an additional
requirement that the intersection or convex hull be contained in some open
hemisphere of Sn. This avoids antipodal points and the non-uniqueness
of the geodesics connecting them. With closed hemispheres replacing closed
half-spaces and lower dimensional unit subspheres replacing affine subspaces,
the other definitions are unchanged.

Definition 2.7 (PS complex). A piecewise spherical complex (or PS com-
plex ) is the regular cell complex that results when a disjoint union of spher-
ical polytopes are glued together via isometric identifications of their faces.
As above we usually insist that each polytope embeds into the quotient and
that they intersect along faces. As above, so long as the complex has finite
shapes, the result is a geodesic metric space.

Definition 2.8 (Vertex links). Let v be a vertex of a Euclidean polytope σ.
The link of v in σ is the set of directions that remain in σ. More precisely,
the vertex link lk(v, σ) is the spherical polytope of unit vectors u such that
v + εu is in σ for some ε > 0. More generally, let v be a vertex of a PE
complex K. The link of v in K, denoted lk(v,K) is obtained by gluing
together the spherical polytopes lk(v, σ) where σ is a Euclidean polytope
in K with v as a vertex. The intuition is that lk(v,K) is a rescaled version
of the boundary of an ε-neighborhood of v in K.

A vertex link of a Euclidean polytope is a spherical polytope, a vertex
link of a PE complex is a PS complex, and a vertex link of a cube complex
is a simplicial complex. The converse is also true in the sense that every
spherical polytope is a vertex link of some Euclidean polytope, every PS
complex is a vertex link of some PE complex, and every simplicial complex
is a vertex link of some cube complex.

Definition 2.9 (Spherical joins). Given PS complexes K and L, we define
a new PS complex K ∗ L that is the spherical analog of Euclidean product.
As remarked above, there is a PE complex K ′ with a vertex v such that
K = lk(v,K ′) and a PE complex L′ with a vertex w such that L = lk(w,L′).
We define K ∗ L to be the link of (v, w) in K ′ × L′. The cell structure of
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K ∗ L as a PS complex is built from spherical joins of cells of K with L. In
particular, each spherical polytope in K ∗ L is σ ∗ τ where σ is a cell of K
and τ is a cell of L. One difference in the spherical context is that the empty
face plays an important role. There are cells in K ∗ L of the form σ ∗ ∅ and
∅ ∗ τ that fit together to form a copy of K and a copy of L, respectively.
What is going on is that the link of (v, w) in K ′ × {w} = K ′ is K ∗ ∅ = K
and the link of (v, w) in {v}×L′ = L′ is ∅ ∗L = L. The spherical join K ∗L
can alternatively be defined as the smallest PS complex containing a copy of
K and a copy of L such that every point of K is distance π

2 from every point
of L [7, p.63]. Spherical join is a commutative and associative operation on
PS complexes with the empty complex ∅ as its identity.

Next we extend the notion of a vertex link to the link of a face of a
polytope and the link of a cell in a PE complex.

Definition 2.10 (Face links). Let x be a point in an n-dimensional Eu-
clidean polytope σ, let τ be the unique face of σ that contains x in its
interior, let k be the dimension of τ , and define lk(x, σ) as in Definition 2.8.
If x is not a vertex, then lk(x, σ) is not a spherical polytope. In fact,
lk(x, σ) ⊃ lk(x, τ) = Sk−1 which contains antipodal points since k > 0.
To remedy this situation we note that lk(x, σ) = lk(x, τ) ∗ lk(τ, σ) where
the latter is a spherical polytope defined as follows. The link of τ in σ is
the set of directions perpendicular to τ that remain in σ. More precisely,
the face link lk(τ, σ) is the spherical polytope of unit vectors u perpendic-
ular to the affine hull of τ such that for any x in the interior of τ , x + εu
is in σ for some ε > 0. More generally, let τ be a cell of a PE complex
K. The link of τ in K, denoted lk(τ,K), is obtained by gluing together
the spherical polytopes lk(τ, σ) where σ is a Euclidean polytope in K with
τ as a face. As an illustration, if x is a point in an edge τ of a tetra-
hedron σ, then lk(τ, σ) is a spherical arc whose length is the size of the
dihedral angle between the triangles containing τ , whereas lk(x, τ) = S0

and lk(x, σ) = lk(x, τ) ∗ lk(τ, σ) = S0 ∗ lk(τ, σ) is a lune of the 2-sphere.
More generally, if x is a point in a PE complex K, τ is the unique cell of
K containing x in its interior, and k is the dimension of τ , then, viewing
lk(x,K) as a rescaling of the boundary of an ε-neighborhood of x in K, we
have that lk(x,K) = lk(x, τ) ∗ lk(τ,K) = Sk−1 ∗ lk(τ,K).

Definition 2.11 (Links in PS complexes). Let σ be a cell in a PS complex
K. To define lk(σ,K) we find a PE complex K ′ with vertex v such that K =
lk(v,K ′) and then identify the unique cell σ′ in K ′ such that σ = lk(v, σ′).
We then define the PS complex lk(σ,K) as the PS complex lk(σ′,K ′).

We conclude by recording some elementary properties of links and joins.

Proposition 2.12 (Links of links). If σ ⊂ σ′ are cells in a PE or PS complex
K then there is a cell τ in L = lk(σ,K) such that lk(τ, L) = lk(σ′,K).
Moreover, the link of every cell τ in lk(σ,K) arises in this way. In other
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words, a link of a cell in the link of a cell is a link of a larger cell in the
original complex.

Proposition 2.13 (Links of joins). Let K and L be PS complexes with cells
σ and τ respectively. If K ′ = lk(σ,K) and L′ = lk(τ, L), then K ′ ∗ L,
K ∗L′ and K ′ ∗L′ are links of cells in K ∗L. Moreover, every link of a cell
in K ∗ L is of one of these three types.

3. Curvature

As a final bit of background, we review curvature conditions such as
CAT(0) and CAT(1). In general these terms are defined by requiring that
certain geodesic triangles be “thinner” than comparison triangles in R2 or
S2, but because we are just reviewing CAT(0) PE complexes and CAT(1) PS
complexes, alternate definitions are available that only involve the existence
of short geodesic loops in links of cells.

Definition 3.1 (Geodesics and geodesic loops). A geodesic in a metric space
is an isometric embedding of a metric interval and a geodesic loop is an
isometric embedding of a metric circle. A local geodesic and local geodesic
loop are weaker notions that only require the image curves be locally length
minimizing. For example, a path more than halfway along the equator of a
2-sphere is a local geodesic but not a geodesic and a loop that travels around
the equator twice is a local geodesic loop but not a geodesic loop. A loop in
a PS complex of length less than 2π is called short and a PS complex that
contains no short local geodesic loops is called large.

Definition 3.2 (Curvature conditions). If K is a PE complex with finite
shapes and the link of every cell in K is large, then K is nonpositively curved
or locally CAT(0). If, in addition, K is connected and simply connected,
then K is CAT(0). As a consequence of the general theory of CAT(0)
spaces, such a complex K is contractible. If K is a PS complex and the link
of every cell in K is large, then K is locally CAT(1). If, in addition, K itself
is large, then K is CAT(1).

It follows from the definitions and Proposition 2.12 that a PE complex is
nonpositively curved iff its vertex links are CAT(1). Moreover, in the same
way that every PS complex is a vertex link of a PE complex, every CAT(1)
PS complex is the vertex link of a CAT(0) PE complex.

A standard example where the CAT(0) condition is easy to check is in
a cube complex. The link of a cell in a cube complex is a PS simplicial
complex built out of all-right spherical simplices, i.e. spherical simplices
in which every edge has length π

2 . To check whether a cube complex is
CAT(0) it is sufficient to check whether its vertex links satisfy the purely
combinatorial condition of being flag complexes.

Definition 3.3 (Flag complexes). A simplicial complex contains an empty
triangle if there are three vertices pairwise joined by edges but no triangle
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with these three vertices as its corners. More generally, a simplicial complex
K contains an empty simplex if for some n > 1, K contains the boundary
of an n-simplex but no n-simplex with the same vertex set. A flag complex
is a simplicial complex with no empty simplices.

Proposition 3.4 (CAT(0) cube complexes). A cube complex K is CAT(0)
iff lk(v,K) is a flag complex for every vertex v which is true iff lk(σ,K)
has no empty triangles for every cell σ.

If a PS complex K is locally CAT(1) but not CAT(1) (i.e. the links of K
are large, but K itself is not large) then we say K is not quite CAT(1). In
[3] Brian Bowditch characterized not quite CAT(1) spaces using the notion
of a shrinkable loop.

Definition 3.5 (Shrinkable loop). Let γ be a rectifiable loop of finite length
in a metric space. We say that γ is shrinkable if there exists a continuous
deformation from γ to a loop γ′ that proceeds through rectifiable curves of
finite length in such a way that the lengths of the intermediate curves are
nonincreasing and the length of γ′ is strictly less than the length of γ. If γ
is not shrinkable, it is unshrinkable.

The following is a special case of the general results proved in [3].

Lemma 3.6 (Not quite CAT(1)). If K is a locally CAT(1) PS complex
with finite shapes, then the following are equivalent:

1. K is not quite CAT(1),
2. K contains a short geodesic loop,
3. K contains a short local geodesic loop, and
4. K contains a short unshrinkable loop.

This is an extremely useful lemma since it is sometimes easier to establish
that every loop in a space is shrinkable than it is to show that it does not
contain a short local geodesic. Sometimes, for example, a single homotopy
shrinks every curve simultaneously.

Definition 3.7 (Monotonic contraction). Let X be a metric space and let
H : X × [0, 1] → X be a homotopy contracting X to a point (i.e. H0 is
the identity map and H1 is a constant map). We say H is a monotonic
contraction if H simultaneously and monotonically shrinks every rectifiable
curve in X to a point.

An example of a monotonic contraction is straightline homotopy from the
identity map on Rn to a constant map. A spherical version of monotonic
contraction is needed in §4.

Definition 3.8 (Hemispheric contraction). Let u be a point in Sn and let
X be a hemisphere of Sn with u as its pole, i.e. the ball of radius π

2 around
u. Every point v in X lies on a unique geodesic connecting v to u and we
can define a homotopy that moves v to u at a constant speed so that at
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time t it has traveled t of the distance along this geodesic. This hemispheric
contraction to u is a monotonic contraction in the sense defined above.

Although Lemma 3.6 only applies to locally CAT(1) PS complexes, such
contexts can always be found when curvature conditions fail.

Proposition 3.9 (Curvature and links). Let K be a connected and simply-
connected PE complex with finite shapes. If K is not CAT(0) then there is
a cell σ in K such that lk(σ,K) is not quite CAT(1). Similarly, if K is a
PS complex that is not CAT(1) then either K itself is not quite CAT(1) or
there is a cell σ such that lk(σ,K) is not quite CAT(1).

Proof. Let S be the set of the cells σ in K such that lk(σ,K) is not CAT(1)
and order them by inclusion. Unless K itself is a not quite CAT(1) PS com-
plex, the set S is not empty. Moreover, because K has finite shapes, K is
finite dimensional, and S has maximal elements. If σ is such a maximal ele-
ment, then maximality combined with Proposition 2.12 shows that lk(σ,K)
is locally CAT(1). Since σ is in S, lk(σ,K) is not CAT(1). Thus lk(σ,K)
is not quite CAT(1). �

To show that a PE or PS complex is not CAT(0) or CAT(1) it is con-
venient to be able to construct and detect local geodesic loops. We do this
using piecewise geodesics.

Definition 3.10 (Piecewise geodesics). Let K be a PE or PS complex and
let (x0, x1, . . . , xn) be a sequence of points in K such that for each i, xi−1

and xi belong to a unique minimal common cell of K and x0 = xn. The
piecewise geodesic loop defined by this list is the concatenation of the unique
geodesics from xi−1 to xi in the (unique) minimal common cell containing
them. The points xi are its transition points. Piecewise geodesics are local
geodesics iff they are locally geodesic at its transition points. This can be
determined by examining two transition vectors: the unit tangent vector at
xi for the geodesic connecting xi to xi+1 and the unit tangent vector at xi for
the geodesic from xi to xi−1 (traversed in reverse). These correspond to two
points in lk(xi,K). We say that the transition points are far apart if the
distance between them is at least π inside lk(xi,K). Finally, a piecewise
geodesic loop γ in a PS or PE complex K is a local geodesic iff at every
transition point x, the transition vectors are far apart in lk(x,K).

We conclude by relating curvature, links and spherical joins.

Proposition 3.11 (CAT(1) and joins). Let K and L be PS complexes.
1. K ∗ L is CAT(1) iff K and L are CAT(1).
2. If K ∗ L is locally CAT(1) then K and L are locally CAT(1).
3. If K ∗ L is not quite CAT(1) then K or L is not quite CAT(1).

Similar assertions hold for spherical joins of the form K1 ∗K2 ∗ · · · ∗Kn.

Proof. The first part is Corollary II.3.15 in [7]. For the second assertion
suppose K ∗ L is locally CAT(1) and let K ′ be a link of K. Since K ′ ∗ L
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Figure 2. A 3-dimensional orthoscheme.

is a link of K ∗ L (Proposition 2.13), it is CAT(1) by assumption. But
then K ′ is CAT(1) by the part 1 and K is locally CAT(1). The third part
merely combines the first two and extending to multiple joins is an easy
induction. �

4. Orthoschemes

In this section we introduce the shapes that H.S.M. Coxeter called “or-
thoschemes” [8] and our main goal is to establish that face links in or-
thoschemes decompose into simple shapes (Corollary 4.7). Roughly speaking
an orthoscheme is the convex hull of a piecewise linear path that proceeds
along mutually orthogonal lines.

Definition 4.1 (Orthoschemes). Let (v0, v1, . . . , vn) be an ordered list of
n+1 points in Rn and for each i ∈ [n] let ui be the vector from vi−1 to vi. If
the vectors {ui} form an orthogonal basis of Rn then the convex hull of the
points {vi} is a metric n-simplex called an n-orthoscheme that we denote
Ortho(v0, . . . , vn). If the vectors {ui} form an orthonormal basis, then it is a
standard n-orthoscheme. It follows easily from the definition that every face
of an orthoscheme (formed by selecting a subset of its vertices) is itself an
orthoscheme, although not all faces of a standard orthoscheme are standard.
Faces defined by consecutive vertices are of particular interest and we use
O(i, j) to denote the face Ortho(vi, . . . , vj) of O = Ortho(v0, . . . , vn). The
points vi are the vertices of the orthoscheme, v0 and vn are its endpoints
and the edge connecting v0 and vn is its diagonal. A 3-orthoscheme is shown
in Figure 2.

For later use we define a contraction of an endpoint link of an orthoscheme.

Proposition 4.2 (Endpoint contraction). If v is an endpoint of an or-
thoscheme O and u is the unit vector pointing from v along its diagonal,
then hemispheric contraction to u monotonically contracts lk(v,O).

Proof. Let O = Ortho(v0, . . . , vn) and let v = v0. Without loss of generality
arrange O in Rn so that v0 is the origin and each vector vi−vi−1 is a positive
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scalar multiple of a standard basis vector. In this coordinate system all of O
lies in the nonnegative orthant and the coordinates of vn are strictly positive.
In particular the convex spherical polytope lk(v,O) is contained in an open
hemisphere of Sn−1 with u as its pole, where u is the unit vector pointing
towards vn. This is because an all positive vector such as u and any nonzero
nonnegative vector have a positive dot product, making the angle between
them acute. Finally, hemispheric contraction to u monotonically contracts
lk(v,O) because lk(v,O) is a convex set containing u. �

The orthogonality embedded in the definition of an orthoscheme causes
its face links to decompose into spherical joins. As a warm-up for the general
statement, we consider links of vertices and edges in orthoschemes.

Example 4.3 (Vertex links in orthoschemes). Let O = Ortho(v0, v1, . . . , vn)
be an orthoscheme, let v = vk be a vertex with 0 < k < n, and consider
suborthoschemes K = O(0, k) and L = O(k, n). The affine subspaces con-
taining K and L are orthogonal to each other and the original orthoscheme
is the convex hull of these two faces. Thus lk(v,O) = lk(v,K) ∗ lk(v, L).
In fact, this formula remains valid when k = 0 (or k = n) since then K (or
L) has only a single point, its link is empty and this factor drops out of the
spherical join since ∅ is the identity of the spherical join operation. Finally,
note that the factors are endpoint links of the suborthoschemes K and L.

Example 4.4 (Edge links in orthoschemes). For each k ≤ ` consider the
link of the edge ek` connecting vk and v` in O = Ortho(v0, v1, . . . , vn). If
we define K = O(0, k), L = O(k, `) and M = O(`, n) then we claim that
lk(ek`, O) = lk(vk,K) ∗ lk(ek`, L) ∗ lk(v`,M). To see this note that the
linear subspaces corresponding to the affine spans of K, L and M form an
orthogonal decomposition of Rn and, as a consequence, any vector can be
uniquely decomposed into three orthogonal components. It is then straight-
forward to see that a vector perpendicular to ek` points into O iff its compo-
nents live in the specified links. The first and last factors are local endpoint
links and the middle factor is a local diagonal link. As above, the first fac-
tors drops out when k = 0, the last factor drops out when ` = n, but also
note that the middle factor drops out when k and ` are consecutive since
the diagonal link of O(k, k + 1) is empty.

We are now ready for the precise general statement.

Proposition 4.5 (Links in orthoschemes). Let O = Ortho(v0, v1, . . . , vn)
and let σ be a k-dimensional face with vertices {vx0 , vx1 , . . . , vxk

} where 0 ≤
x0 < x1 < · · · < xk ≤ n. The link of σ in O is a spherical join of two
endpoint links and k diagonal links of suborthoschemes. More specifically,

lk(σ,O) = K0 ∗ L0 ∗ L1 ∗ · · · ∗ Lk ∗K1

where K0 = lk(vx0 , O(0, x0)) and K1 = lk(vxk
, O(xk,1)) are local endpoint

links, and each Li = lk(exi−1xi , O(xi−1, xi)) is a local diagonal link.
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Figure 3. Barycentric subdivision of a 3-cube of side
length 2 into 48 standard 3-orthoschemes.

Proof. The full proof is basically the same as the one given above for edge
links. Orthogonally decompose Rn into linear subspaces corresponding to
the affine hulls of O(0, x0), O(xk,1) and O(xi−1, xi) for each i ∈ [k], then
check that a vector perpendicular to σ points into O iff its components live
in the listed links. In an orthogonal basis compatible with the orthogonal
decomposition that contains the local diagonal directions along each exi−1xi

this conclusion is immediate. �

Coxeter’s interest in these shapes is related to the observation that the
barycentric subdivision of a regular polytope decomposes it into isometric
orthoschemes. These orthoschemes are fundamental domains for the action
of its isometry group and correspond to the chambers of its Coxeter com-
plex. For example, a barycentric subdivision of the 3-cube of side length 2
partitions it into 48 standard 3-orthoschemes and the barycentric subdivi-
sion of an n-cube of side length 2 produces n! · 2n standard n-orthoschemes
(see Figure 3). These cube decompositions also make it easy to identify the
shape of the endpoint link and the diagonal link in a standard orthoscheme.

Definition 4.6 (Coxeter shapes). Let O = Ortho(v0, v1, . . . , vn) be a stan-
dard n-orthoscheme. The links lk(v0, O) and lk(vn, O), are isometric to
each other and we call this common shape βn because it is a spherical sim-
plex known as the Coxeter shape of type Bn. The type Bn Coxeter group
is the isometry group of the n-cube and the barycentric subdivision of the
n-cube mentioned above shows that βn is its Coxeter shape, i.e. a funda-
mental domain for the action of this group on the sphere. In low dimensions,
β0 = ∅, β1 is a point, β2 is an arc of length π

4 and β3 is a spherical triangle
with angles π

2 , π
3 , and π

4 . Similarly, the link of the diagonal connecting v0
and vn in O is a shape that we call αn−1 because it is the spherical simplex
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known as the Coxeter shape of type An−1. The An−1 Coxeter group is the
symmetric group Symn, the isometry group of the regular (n − 1)-simplex
and also the stabilizer of a vertex inside the isometry group of the n-cube.
In low dimensions, α0 = ∅, α1 is a point, α2 is an arc of length π

3 and α3 is
a spherical triangle with angles π

2 , π
3 , and π

3 .

The following corollary of Proposition 4.5 is now immediate.

Corollary 4.7 (Links in standard orthoschemes). The link of a face of a
standard orthoscheme is a spherical join of spherical simplices each of type
A or type B. More specifically, in the notation of Proposition 4.5, K0 has
shape βx0, K1 has shape βn−xn and Li has shape αj with j = xi+1 − xi − 1.

As an illustration, the link of the tetrhedron with corners v3, v6, v7 and v12

in a standard 12-orthoscheme is isometric to β3∗α2∗α0∗α4∗β0 = β3∗α2∗α4.
Finally we record a few results about lengths and angles in orthoscheme links
that are needed later in the article.

Proposition 4.8 (Edge lengths). The link of the diagonal of a standard
n-orthoscheme O = Ortho(v0, . . . , vn) is a spherical simplex of shape αn−1

whose vertices correspond to the vi with 0 < i < n. Moreover, if i, j, and
k are positive integers with i + j + k = n and θ is the length of the edge
connecting the vertex of rank i and the vertex of corank k in αn−1, then
0 < θ < π

2 and cos(θ) =
√

i
i+j · k

j+k .

Proof. Consider the triangle with vertices v0, vi and vn−k = vi+j . If we
project this triangle onto the hyperplane perpendicular to the edge e0n, then
the angle at v0 in the projected triangle is the length of the corresponding
edge in αn−1. Let u be the projection of e0i and let v be the projection of
e0(n−k) (with both multiplied by n to clear the denominators). In coordi-
nates u = ((j + k)i, (−i)j+k) and v = (ki+j , (−i − j)k). Here we are using
Conway’s exponent notation to simplify vector expressions. In words the
first i coordinates of u are j+k and the remaining j+k coordinates are −i.
The dot products simplify as follows: u · v = i.k.n while u · u = i.(j + k).n
and v · v = (i+ j).k.n. Thus

cos2(θ) =
(u · v)(u · v)
(u · u)(v · v)

=
(i.k.n)(i.k.n)

(i.(j + k).n)((i+ j).k.n)
=

i

i+ j
· k

j + k
.

�

Corollary 4.9 (Spherical triangles). Let Ortho(v0, . . . , vn) be a standard
n-orthoscheme. For each 0 < x < y < z < n, the diagonal link of the sub-
orthoscheme Ortho(v0, vx, vy, vz, vn) is a spherical triangle with acute angles
at vx and vz and a right angle at vy.

Proof. From Proposition 4.8 the lengths of the edges of the spherical tri-
angle are known explicitly and the angle assertions follow from the stan-
dard spherical trigonometry. For example, if we select positive integers
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∅

a b c

ab ac bc

abc

∅

a b
c

ab
ac

bc

abc

Figure 4. The rank 3 boolean lattice and its unit 3-cube
orthoscheme complex. The orthoscheme from the chain ∅ ⊂
{b} ⊂ {b, c} ⊂ {a, b, c} is shaded.

i + j + k + l = n such that vx has rank i, vy has rank i + j and vz has

rank i + j + k, then cos|exy| =
√

i
i+j · k+l

j+k+l , cos|eyz| =
√

i+j
i+j+k · l

k+l and

cos|exz| =
√

i
i+j+k · l

j+k+l . From the equality cos|exy| · cos|eyz| = cos|exz|
and the spherical law of cosines we infer that the angle at vy is a right angle.
The acute angle conclusion involves a similar but messier computation. �

5. Orthoscheme complexes

In this section we use orthoschemes to turn order complexes into PE
complexes. Although every simplicial complex can be turned into a PE
complex by making simplices regular and every edge length 1, the curvature
properties of the result tend to be hard to evaluate. For order complexes of
graded posets orthoschemes are a better option.

Definition 5.1 (Orthoscheme complex). The orthoscheme complex of a
graded poset P is a metric version of its order complex |P | that assigns
every top dimensional simplex in |P | (i.e. those corresponding to maximal
chains x0 < x1 < · · · < xn) the metric of a standard orthoscheme with
vxi corresponding to vi. As a result, for all elements x < y in P , the
length of the edge connecting vx and vy in |P | is

√
k where k is the rank

of Pxy. When |P | is turned into a PE complex in this way we say that |P |
is endowed with the orthoscheme metric. Unless otherwise specified, from
now on |P | indicates an orthoscheme complex, i.e. an order complex with
the orthoscheme metric.

One reason for using this particular metric on the order complex of a
poset is that it turns standard examples of posets into metrically interesting
PE complexes.
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Example 5.2 (Boolean lattices). The rank n boolean lattice is the poset
of all subsets of [n] := {1, 2, . . . , n} ordered by inclusion. The orthoscheme
complex of a boolean lattice is a subdivided unit n-cube (or one orthant
of the barycentric subdivision of the n-cube of side length 2 described ear-
lier), its endpoint link is the barycentric subdivision of an all-right spherical
simplex tiled by simplices of shape βn and its diagonal link is a subdivided
sphere tiled by simplices of shape αn−1. See Figure 4.

That the orthoscheme complex of a boolean lattice is a cube can be ex-
plained by a more general fact about products.

Remark 5.3 (Products). A product of posets produces an orthoscheme
complex that is a product of metric spaces. In particular, if P and Q are
bounded graded posets, then |P × Q| and |P | × |Q| are isometric. The
product on the left is a product of posets and the product on the right is
a product of metric spaces. Since finite boolean lattices are poset products
of two element chains, their orthoscheme complexes are, up to isometry,
products of unit intervals, i.e. cubes.

Cube complexes produce a second family of examples.

Example 5.4 (Cube complexes). Let K be a cube complex scaled so that
every edge has length 2. The face poset of K is a graded poset P whose
intervals are boolean lattices. The orthoscheme complex |P | is isometric to
the cube complex K. In other words, the metric barycentric subdivision of
an arbitrary cube complex is identical to the orthoscheme complex of its
face poset.

A third family of examples shows that there are interesting CAT(0) or-
thoscheme complexes unrelated to cubes and cube complexes.

Example 5.5 (Linear subspace posets). The n-dimensional linear subspace
poset over a field F is the poset Ln(F) of all linear subspaces of the n-
dimensional vector space Fn ordered by inclusion. It’s basic properties are
explored in Chapter 3 of [12]. The poset Ln(F) is bounded above by Fn
and below by the trivial subspace and it is graded by the dimension of the
subspace an element of Ln(F) represents. It turns out that the orthoscheme
complex of Ln(F) is a CAT(0) space and its diagonal link is a standard
example of a thick spherical building of type An−1. The smallest nontrivial
example, with F = Z2 and n = 3, is illustrated in Figure 5 along with its
diagonal link. The middle levels of L3(Z2) correspond to the 7 points and 7
lines of the projective plane of order 2 and its diagonal link is better known
as the Heawood graph, or as the incidence graph of the Fano plane.

With these examples in mind, we now turn to the question of when the
orthoscheme complex of a bounded graded poset P is a CAT(0) PE complex.
The first step is to examine some of its more elementary links.

Definition 5.6 (Elementary links). Let P be a bounded graded poset of
rank n. Three links in the orthoscheme complex |P | are of particular interest.
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Figure 5. The poset L3(Z2) and its diagonal link. In the
PS complex on the right, every edge in the graph should be
viewed as a spherical arc of length π

3 .

The PS complexes lk(v0, |P |) and lk(v1, |P |) are the endpoint links of |P |
and lk(e01, |P |) is its diagonal link. The endpoint links are PS complex
built out of copies of βn and the diagonal link is a PS complex built out of
copies of αn−1. In fact, lk(v0, |P |) is the simplicial complex |P \ {0}| with
a PS βn metric applied to each maximal simplex. Similarly, lk(e01, |P |) is
|P \{0,1}| with an αn−1 metric on each maximal simplex. Collectively these
three links are the elementary links of the orthoscheme complex |P |. Note
that endpoint links are empty when P has rank 0, and the diagonal links are
empty when P has rank 1. This corresponds to the fact that β0 = α0 = ∅.

In order to determine whether an orthoscheme complex is CAT(0), we
need to understand the structure of the link of an arbitrary simplex. We
do this by showing that the link of an arbitrary simplex decomposes as a
spherical join of local elementary links. This decomposition is based on the
decomposition described in Corollary 4.7 and is only possible because of the
orthogonality built into the definition of an orthoscheme.

Proposition 5.7 (Links in orthoscheme complexes). Let P be a bounded
graded poset. If x0 < x1 < · · · < xk is a chain in P and σ is the correspond-
ing simplex in its orthoscheme complex, then lk(σ, |P |) is a spherical join
of two local endpoint links and k local diagonal links. More specifically,

lk(σ, |P |) = K0 ∗ L0 ∗ L1 ∗ · · · ∗ Lk ∗K1

where K0 = lk(vx0 , |P (0, x0)|) and K1 = lk(vxk
, |P (xk,1)|) are local end-

point links, and each Li = lk(exi−1xi , |P (xi−1, xi)|) is a local diagonal link.

Proof. Let P have rank n. Since every chain is contained in a maximal
chain of length n, every simplex containing σ is contained in a standard
n-orthoscheme of |P |. In particular, the link of σ in |P | is a PS complex
obtained by gluing together the link of σ in each n-orthoscheme that con-
tains it. By Corollary 4.7, each such link decomposes as spherical joins of
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Coxeter shapes. Moreover, these decompositions are compatible from one
n-orthoscheme to the next, reflecting the fact that every maximal chain
extending x0 < x1 < · · · < xk is formed by selecting a maximal chain
from P (0, x0), a maximal chain from P (xk,1) and a maximal chain from
P (xi−1, xi) for each i ∈ [k] and these choices can be made independently of
one another. When the links of σ in each n-orthoscheme are pieced together,
the result is the one listed in the statement. �

Understanding links thus reduces to understanding elementary links.

Lemma 5.8 (Endpoint links). An endpoint link of a bounded graded poset P
is a monotonically contractible PS complex and thus contains no unshrink-
able loops. In particular, endpoint links cannot be not quite CAT(1).

Proof. Let v be an endpoint of |P |, let K = lk(v, |P |), then let u ∈ K be the
unit vector at v pointing along the common diagonal of all the orthoschemes
of |P |. The contractions defined in Proposition 4.2 are compatible on their
overlaps and jointly define a monotonic contraction from K to u. In partic-
ular, all loops in K monotonically shrink under this homotopy. �

Lemma 5.9 (Diagonal links). Let P be a bounded graded poset. For every
x < y in P there is a simplex σ in |P | such that lk(σ, |P |) and lk(exy, |Pxy|)
are isometric.

Proof. Pick a maximal chain extending x < y and remove the elements
strictly between x and y. If σ is the simplex of |P | that corresponds to
this subchain then by Proposition 5.7 the link of σ is a spherical join of
lk(exy, |Pxy|) with other elementary links, all of which are empty in this
context. As a consequence lk(σ, |P |) and lk(exy, |Pxy|) are isometric. �

Recall that a PS complex is large if it has no short local geodesic loops.
Using the results above, we now show that the curvature of an orthoscheme
complex only depends on whether or not its local diagonal links are large.

Theorem 5.10 (Orthoscheme link condition). If P is a bounded graded
poset then its orthoscheme complex |P | is not CAT(0) iff there is a local
diagonal link of P that is not quite CAT(1). As a result, |P | is CAT(0) iff
every local diagonal link of P is large.

Proof. For each interval Pxy there is a simplex σ in |P | so that lk(σ, |P |) and
lk(exy, |Pxy|) are isometric (Lemma 5.9). If |P | is CAT(0), then lk(σ, |P |) =
lk(exy, |Pxy|) is CAT(1). Conversely, suppose the complex |P | is not CAT(0)
and recall that it is contractible (Proposition 1.7). It contains a simplex with
a not quite CAT(1) link (Proposition 3.9) that factors as a spherical join
of local elementary links (Proposition 5.7). Moreover, there is a not quite
CAT(1) factor (Proposition 3.11) which must be a diagonal link of an in-
terval since by Lemma 5.8 endpoint links cannot be not quite CAT(1). �
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Figure 6. Two views of a spindle of girth 14. The 3-
dimensional version, which looks like an antiprism capped
off by two pyramids is the reason for the name.

6. Spindles

In this section we introduce combinatorial configurations we call spindles
and we relate the existence of spindles in a bounded graded poset P to the
existence of certain local geodesic loops in a local diagonal link of P . When
defining spindles, we use the notion of complementary elements.

Definition 6.1 (Complements). Two elements x and y in a bounded poset
P are complements or complementary when x ∨ y = 1 and x ∧ y = 0. In
particular 1 is their only upper bound and 0 is their only lower bound. A
pair of elements in a boolean lattice representing complementary subsets are
complementary in this sense. Note that if z is any maximal lower bound of
x and y and w is any minimal upper bound of x and y then x and y are
complements in the interval Pzw.

Definition 6.2 (Spindles). For some k ≥ 2 let (x1, x2, . . . , x2k) be a se-
quence of 2k distinct elements in a bounded graded poset P where the
subscripts are viewed mod 2k and note that the parity of a subscript is well-
defined in this context. Such a sequence forms a global spindle of girth 2k
if for every i with one parity, xi−1 and xi+1 are complements in P0xi and
for every i with the other parity, xi−1 and xi+1 are complements in Pxi1.
See Figure 6. The elements 0 and 1 are called the endpoints of the global
spindle and the sequence of elements (x1, x2, . . . , x2k) describes a zig-zag
path in P but with additional restrictions. There is also a local version. A
(local) spindle, with or without the adjective, is a global spindle inside some
interval Pzw with endpoints z and w.

Definition 6.3 (Short spindles). The length of a global spindle is the length
of the corresponding loop in the 1-skeleton of the diagonal link of P (endowed
with the metric induced by the orthoscheme metric). A global spindle is
short if its length is less than 2π. The lengths of the individual edges in the
diagonal link can be calculated using Proposition 4.8 and the reader should
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Figure 7. The three types of loops discussed in this section.

note that every edge in a diagonal link has length less than π
2 . Thus every

spindle of girth 4 is short.

A spindle is a generalization of a bowtie in the following sense.

Proposition 6.4 (Spindles, bowties and lattices). A bounded graded poset
P contains a bowtie iff it contains a spindle of girth 4. In particular, P is a
lattice iff P does not contains a spindle of girth 4 and every bounded graded
poset with no short spindles is a lattice.

Proof. If P contains a spindle of girth 4 in the interval Pzw, then x1, x2,
x3 and x4 form a bowtie since the bowtie conditions follow from the com-
plementarity requirements. For example, x2 is a maximal lower bound for
x1 and x3 because x1 and x3 are complements in the interval Px2w. In the
other direction suppose a, b, c, and d form a bowtie, let z be any maximal
lower bound for b and d and let w be any minimal upper bound for a and
c. It is then easy to check that (a, b, c, d) is a global spindle of girth 4 in the
interval Pzw. The final assertion follows from Proposition 1.5 and the fact
that every spindle of girth 4 is short. �

The next step is to relate spindles and local geodesics in diagonal links.
Let P be a bounded graded poset and let K be its orthoscheme complex.
By Theorem 5.10 we know that determining whether or not K is CAT(0)
reduces to determining whether or not an interval of P has a diagonal link
containing a short local geodesic. Since generic local geodesics are hard to
describe and hard to detect, we shift our focus to the simplest local geodesics,
i.e. those that remain in the 1-skeleton of the local diagonal link. We now
show that such paths are described by spindles. Figure 7 summarizes the
relationships among these three classes of loops just described.

Proposition 6.5 (Transitions and complements). Let P be a bounded graded
poset and let exy and eyz be distinct edges in the diagonal link of P . If the
piecewise geodesic path from vx to vy to vz in the diagonal link of P is lo-
cally geodesic at vy then either x and z are complements in the interval P0y

or x and z are complements in the interval Py1. As a consequence, every
local geodesic loop in the diagonal link of P that remains in its 1-skeleton
corresponds to a global spindle of P .

Proof. First note that because the edges exy and eyz exist, x and y are
comparable in P and y and z are comparable in P . If x and z are comparable
as well then the path through vy is not locally geodesic because x, y and z
form a chain, vx, vy and vz are the corners of a convex spherical triangle in
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lk(e01, |P |) and the nonobtuse angle at vy (Corollary 4.9) shows that the
path through vy is not locally geodesic because the transition vectors are not
far apart. In the remaining cases both x and z are below y or both x and z
are above y. Assume that both are in P0y; the other case is analogous and
omitted. If there is a w in P0y that is an upper bound of x and z other than y
or a lower bound of x and z other than 0 then there is a spherical triangle in
lk(e01, |P |) with vertices vw, vy and vx and a second triangle with vertices
vw, vy and vz. As both triangles have acute angles at vy (Corollary 4.9) and
the path through vy is not locally geodesic because the transition vectors
are not far apart. For the final assertion suppose that (x1, . . . , xk) are the
vertices of a local geodesic loop that remains in the 1-skeleton of the diagonal
link of P . The local result proved above means that adjacent triples satisfy
the required conditions and it forces the orderings (xi < xi+1 or xi > xi+1)
to alternate, making k even. �

It is important to note that implication established above is in one direc-
tion only: a locally geodesic loop in the 1-skeleton of a diagonal link must
come from a spindle but not every spindle necessarily produces a locally
geodesic loop. The problem is that just because x and z are complements
in P0y does not necessarily mean that vx and vz are far apart in lk(vy, |P |)
even though we conjecture that this is often the case.

Conjecture 6.6 (Complements are far apart). Let P be a bounded graded
poset and let K be its diagonal link. If x and y are complements in P and
K is CAT(1) then vx and vy are far apart in K.

We know that Conjecture 6.6 is true for the rank n boolean lattice P
because the only elements that are complements in P correspond to com-
plementary subsets A and B, these correspond to opposite corners of the
n-cube |P | and to antipodal points in the n− 1 sphere that is the diagonal
link of P . In particular, they represent points that are distance π from each
other in lk(e01, |P |). In fact, for boolean lattices, more is true.

Proposition 6.7 (Boolean spindles). If P is a boolean lattice of rank n
then every spindle in P has girth 6, length 2π and describes an equator of
the (n − 1)-sphere that is the diagonal link of P . In particular, P has no
short spindles.

Proof. Let (x1, x2, . . . , x2k) be a spindle in P . Since intervals in boolean
lattices are themselves boolean lattices, we may assume without loss of gen-
erality that this is a global spindle. Suppose x1 < x2 and let A and B be
the uniquely determined disjoint subsets of [n] such that x1 represents the
set A and x2 represents the subset A∪B. Finally let C be the complement
of A∪B in [n]. Since x3 is a complement of x1 in P0x2 and complements in
boolean lattices are unique, x3 corresponds to the set B. Similarly, x4 is a
complement of x2 in Px31 and thus must correspond to the set B ∪C. Con-
tinuing in this way, x5, x6, x7 and x8 correspond to the sets C, A∪C, A and
A ∪ B respectively. Since the elements in a spindle are distinct, xi = xi+6
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Figure 8. A portion of a global spindle in a modular lattice
that describes a local geodesic edge path of length π in its
diagonal link.

for all i and the spindle has girth 6. To see that its length 2π, note that the
fact that complements are far apart in boolean lattices means that global
spindles describe paths that are embedded local geodesics in the diagonal
link. In this case the diagonal link of P is a sphere and the only embedded
local geodesics are equatorial paths of length 2π. �

We conclude this section by extending this result to modular lattices.

Definition 6.8 (Modular lattices). A modular lattice is a graded lattice
with the property that if x and y are complements in an interval Pzw and x
has rank i and corank j in this interval, then y has corank i and rank j in
this interval. It should be clear from this definition that finite rank boolean
lattices are examples of modular lattices as are the linear subspace posets
described in Example 5.5.

Proposition 6.9 (Modular spindles). If P is a bounded graded modular
lattice then every spindle in P has girth at least 6 and describes a loop of
length at least 2π. In particular, P has no short spindles.

Proof. Since P is a lattice, by Proposition 6.4 there are no spindles of
length 4. Thus every spindle has girth at least 6. Next, since intervals
in modular lattices are modular lattices we only need to consider global
spindles. Let (x1, x2, . . . , x2k) be a global spindle with x1 < x2 and let i,
j and k be positive integers such that x1 has rank i, x2 has corank k and
i + j + k = n where n is the rank of P . The complementarity conditions
and the definition of modularity imply that x3 has rank j and x4 has corank
i. See Figure 8. The key observation is that these are the same ranks and
coranks and one of the geodesic paths between complementary subsets in a
boolean lattice. In particular, the sum of the lengths of these edges in the
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diagonal link of P is exactly π. Since the girth of the spindle is at least 6,
its length is at least 2π. This completes the proof. �

Since bounded graded modular lattices have no short spindles, the poset
curvature conjecture leads us to conjecture the following.

Conjecture 6.10 (Modular lattices and CAT(0)). Every bounded graded
modular lattice has a CAT(0) orthoscheme complex.

7. Low rank

In this section we shift our attention from bounded posets of arbitrary
rank to those of rank at most 4. Our goal is to prove the poset curvature
conjecture in this context, thus establishing Theorem A. The proof depends
on two basic results. The first is that complementary elements in a low rank
poset correspond to vertices that are always far apart in its diagonal link.

Lemma 7.1 (Low rank complements). If x and y are complements in a
poset P of rank at most 3 then vx and vy are far apart in its diagonal link.

Proof. If P has rank less than 3 then its diagonal link has no edges and vx
and vy are trivially far apart. Thus we may assume that the rank of P is 3.
In this case, the diagonal link is a bipartite metric graph where every edge
has length π

3 and connects an element of rank 1 to an element of rank 2. As
a consequence vx and vy are not far apart iff their combinatorial distance is
less than 3. Distance 1 means x < y or x > y and distance 2 means x and
y are both rank 1 with a common rank 2 upper bound or both rank 2 with
a common rank 1 lower bound. All of these situations are excluded by the
hypothesis that x and y are complements. �

This result has consequences for piecewise geodesic paths in the 1-skeleton
of the diagonal link.

Lemma 7.2 (Low rank transitions). Let P be a bounded graded poset of
rank at most 4. If x, y and z are distinct elements of P such that x and z
are complements in P0y or complements in Py1, then the edge path from vx
to vy to vz in the diagonal link of P is locally geodesic.

Proof. Suppose x and z are complements in P0y; the other case is analogous.
By Lemma 7.1 vx and vz are far apart in lk(e0y, |P0y|) since P0y is a poset
of rank at most 3. Recall that the link of vy in the diagonal link of P is the
spherical join lk(e0y, |P0y|) ∗ lk(ey1, |Py1|). The fact that vx and vz are far
apart in one factor means that vx and vz are far apart in the spherical join.
As a consequence, the path from vx to vy to vz in the diagonal link of P is
locally geodesic. �

Lemma 7.2 quickly implies one-half of Theorem A.

Theorem 7.3 (Low rank spindles). If P is a bounded graded poset of rank at
most 4, then global spindles in P describe local geodesic loops in its diagonal
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Figure 9. Short spindles in rank 4 lattices.

link. As a consequence, if P contains a short spindle, global or local, then
the orthoscheme complex of P is not CAT(0).

Proof. The first assertion follows immediately from Lemma 7.2. To see the
second, suppose P contains a short spindle and restrict to the interval where
it is global. Since the spindle describes a short local geodesic loop in this
local diagonal link, it is not CAT(1) and by Theorem 5.10 the orthoscheme
complex of P is not CAT(0). �

Having established that the existence of short spindles in low rank posets
prevent its orthoscheme complex from being CAT(0), we pause for a moment
to clarify exactly which spindles in low rank posets are short. First note that
every spindle of girth 4 is short (since edges in the diagonal link have length
less than π

2 ) and they occur iff the poset is not a lattice (Proposition 6.4).
Thus we only need to consider spindles in lattices.

Proposition 7.4 (Short spindles). If a bounded graded lattice P of rank at
most 4 contains a short spindle, then P has rank 4, the spindle is a global
spindle of girth 6 and its elements alternate between two adjacent ranks.

Proof. After replacing P by one its intervals if necessary we may assume
that the spindle under consideration is a global spindle in P and, since P
is a lattice, it must have girth at least 6. If P has rank 3 (lower ranks are
too small to contain spindles) then all edges in the diagonal link of P have
length π

3 and the spindle is not short. Thus P has rank 4. In rank 4 there
are two possible edge lengths: the shorter edges connect adjacent ranks and

have length arccos
(√

1
3

)
∼= .304π and the longer edges connect ranks 1 and

3 and have length arccos
(

1
3

) ∼= .392π. (Exact values are calculated using
Proposition 4.8.) Since both lengths are more than π

4 , spindles of girth 8 or
more are not short. Finally, since one long and two short edges have total
length exactly π and spindles in this setting have to have an even number
of longer edges, the only short spindles are those involving six short edges
creating a zig-zag path between two adjacent ranks as shown in Figure 9. �

We should note that these low rank short spindles are closely related to
the empty triangles that arise when testing the curvature of cube complexes.
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Bowties cannot occur in the face poset of a cube complex and the empty
triangles that prevent cube complexes from being CAT(0) correspond to
one of the short spindles of girth 6 just described.

Remark 7.5 (Short spindles and empty triangles). Let K be cube complex
that is not CAT(0) and let σ be a cell in K whose link contains an empty
triangle (Proposition 3.4). The zig-zag path shown on the lefthand side of
Figure 9 corresponds to a portion of the face poset of the link of σ in K. The
three elements in rank 1 and the three elements in rank 2 correspond to the
three vertices and edges respectively of a triangle in the link of σ and the
absence of an element of rank 3 which caps off this zig-zag path corresponds
to the fact that the triangle is empty.

We now return to the proof of Theorem A. The second basic result we
need is that whenever the diagonal link of a low rank poset contains a short
local geodesic, that local geodesic can be homotoped into the 1-skeleton of
the diagonal link without increasing its length. For posets of rank strictly
less than 4 there is nothing to prove and for rank 4 posets we appeal to
earlier work by Murray Elder and the second author [9]. The key concept
we need is that of a gallery.

Definition 7.6 (Galleries). Given a local geodesic loop γ in a PS complex
K one can construct a new PS complex L called a gallery such that the map
γ from a metric circle to K factors through an embedding of the circle into
L and a cellular immersion of L into K. The rough idea is to glue together
copies of the cells through which γ passes in K. More specifically, every
point in the path γ is contained in a uniquely defined open simplex. For
this well-defined linear or cyclic sequence of open simplices, take a copy of
the corresponding closed simplices and glue them together in the minimal
way possible so that the result is a PS complex that maps to K and the
curve γ lifts though this map. See [9] for additional detail.

Definition 7.7 (Types of galleries). So long as the lengths of edges in K
are less than π

2 , the gallery L will be homotopy equivalent to a circle and
the image of the circle in L will have winding number 1. Moreover, if K
is 2-dimensional and the loop γ does not pass through a vertex of K then
L will be a 2-manifold with boundary called either an annular gallery or a
möbius gallery depending on its topology. If γ does pass through a vertex of
K then L is called a necklace gallery and it can be broken up into segments
called beads corresponding to a portion of γ starting at a vertex, ending at
a vertex and not passing through a vertex in between.

In [9] a computer program was used to systematically enumerate the finite
list of possible galleries determined by a short local geodesic in the vertex
link of a PE complex built out of Ã3 Coxeter shapes. (An Ãn Coxeter shape
is a PE tetrahedron whose vertex links are Coxeter shapes of type An. One
general definition of these shapes is given in Definition 8.2.) The results
of this enumeration are listed in Figures 10, 11, and 12 according to the
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Figure 10. Two annular galleries.

Figure 11. Four möbius galleries.

C D E

Figure 12. Three non-trivial beads.

following conventions. The triangles shown should be viewed as representing
spherical triangles: the angles that look like π/2 angles are in fact π/2
angles, while the π/4 angles are meant to represent π/3 angles. Thus, in
the third figure of Figure 12 both sides connecting the specified end cells are
actually geodesics as can be seen in a more suggestive representation of the
same configuration shown on the righthand side of Figure 13. The heavily
shaded leftmost and rightmost edges in the configurations shown in Figure 10
should be identified to produce annuli and the heavily shaded leftmost and
rightmost edges in the configurations shown in Figure 11 should be identified
with a half-twist to produce möbius strips. The three configurations shown
in Figure 12 are three of the beads from which necklace galleries are formed.
They are labeled C, D and E since A and B are used to denote the short
and long edges, respectively, thought of as beads. The following result was
proved in [9].

Proposition 7.8 (Short A3 geodesics). Let K be a vertex link of a PE

complex built out of Ã3 Coxeter shapes. If this PS complex built out of A3

Coxeter shapes is not quite CAT(1) then it contains a short local geodesic
loop γ that determines a gallery L that is either one of the two annular
galleries listed in Figure 10, one of the four möbius galleries listed in Fig-
ure 11, or a necklace gallery formed by stringing together the short edge A,
the long edge B, and the three nontrivial beads shown in Figure 12 in one
of 26 particular ways. In particular, the 26 necklace galleries that contain
a short geodesic loop are described by the following sequences of beads: A2,
A4, A6, A2B, A2B2, A2B3, ABAC, A2C, A2C2, A2D, A2E, A4B, CA4,
B, B2, B3, B4, B5, BE, B2E, C, C2, C3, CD, D, and E.

The relevence of Proposition 7.8 in the current setting is that the diagonal
link of a bounded graded rank 4 poset is a complex built out of A3 spherical
simplices in a way that could have arisen as a vertex link of a PE complex
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Figure 13. A poset configuration and the corresponding PS configuration.
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Figure 14. A poset configuration and the corresponding PS configuration.

built out of Ã3 shapes. We will comment more on this connection in §8.
In particular, if the diagonal link of a bounded graded rank 4 poset is not
quite CAT(1) then it contains a short unshrinkable local geodesic loop that
determines one of the 32 specific galleries listed above.

Lemma 7.9 (Loops and vertices). Let K be the diagonal link of a bounded
graded rank 4 poset P . If K is not quite CAT(1) and γ is a short unshrink-
able locally geodesic loop in K, then γ passes through a vertex of K.

Proof. Let L be the gallery associated to γ. If L is an annular gallery then
γ is shrinkable via the analog of homotoping an equator through lines of
latitude, contradicting our hypothesis. If L is a möbius gallery, then it is
one of the four listed in Figure 11. Since L immerses into the order complex
K of the diagonal link of a rank 4 poset we should be able to label each
vertex of L by the rank of the element of P that corresponds to its image
in K. In particular, the three vertices of a triangle should receive three
distinct numbers from the list {1, 2, 3}. Once one triangle in L is labeled,
the remaining labels are forced and in each instance, the möbius strip cannot
be consistently labelled. As a result L cannot be a möbius gallery. The only
remaining possibility is that L is a necklace gallery and γ passes through a
vertex of K. �

Theorem 7.10 (Restricting to the 1-skeleton). Let P be a bounded graded
poset of rank at most 4. If a local diagonal link of P is not quite CAT(1)
then it contains a short local geodesic loop that remains in its 1-skeleton. In
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particular, when the orthoscheme complex of P is not CAT(0), P contains
a short spindle.

Proof. Since the diagonal link of an interval is 1-dimensional when P has
rank less than 4, the first assertion is trivial in that case. Thus assume that
P has rank 4 and that we are considering the diagonal link K = lk(e01, |P |).
Because K is not quite CAT(1), it is locally CAT(1) but contains a short
locally geodesic loop γ. By Lemma 3.6 and Lemma 7.9 we may also assume
that γ is both unshrinkable and that it is associated with a necklace gallery
L. The necklace L is a string of beads of type A, B, C, D and E. The bead
of type E is a lune, the portion of the geodesic it contains is of length π,
and there is a length-preserving endpoint-preserving homotopy that moves
this portion of γ into the boundary of E. This has the effect of replacing
E with a sequence of edges (AAB or BAA). See Figure 13. Similarly, if L
contains a bead of type D, then P contains a configuration that produces
the lune shown in Figure 14. The portion of the geodesic it contains is
of length π, and there is a length-preserving endpoint-preserving homotopy
that moves this portion of γ into the boundary of the lune. This has the
effect of replacing D with a sequence of edges ABA. Thus we may assume
that L contains no beads of type D or E.

Finally, suppose L contains a bead of type C and consider the bead im-
mediately after it. It cannot be of type B since C ends at a vertex of rank 2
so it is either type A or another bead of type C. If type A then we have all
but one element of the configuration shown on the lefthand side of Figure 13
and there is an additional triangle in K that gives us a way to shorten γ,
contradicting its unshrinkability. On the other hand, if the next bead has
type C (and there are no obivous shortenings) then we have the configu-
ration shown on the lefthand side of Figure 14. Thus there are triangles
present in K that enable us to perform a length-preserving endpoint pre-
serving homotopy of this portion of γ through beads of type CC to a path
in the 1-skeleton passing through edges of type ABA. In short, whenever γ
leaves the 1-skeleton, there is a way to locally modify the path so that its
length never increases and the new path passes through fewer 2-cells. Iter-
ating this process proves the first assertion and the second assertion follows
from Proposition 6.5. �

Combining Theorem 7.3 and Theorem 7.10 establishes the following.

Theorem A. The orthoscheme complex of a bounded graded poset P of
rank at most 4 is CAT(0) iff P is a lattice with no short spindles.

As a quick application note that Theorem A implies that every modular
poset of rank at most 4 has a CAT(0) orthoscheme complex with a CAT(1)
diagonal link. In particular, the theorem shows that the linear subspace
poset L4(F) has a CAT(0) orthoscheme complex for every field F and its
diagonal link, which is a thick spherical building of type A3, is CAT(1).
That the link is CAT(1) is well-known. See, for example, [1] or [10].
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Figure 15. The figure shows the partition lattice Π4 with
the blocks indicated by their convex hulls. If the portion
surrounded by a dashed line is removed, the result is the
noncrossing partition lattice NC4.

8. Artin groups

In this final section we first apply Theorem A to a poset closely associated
with the 5-string braid group and then, at the end of the section, we extend
the discussion to the other four generator Artin groups of finite-type. For
the braid group, the relevant poset is the lattice of noncrossing partitions.

Definition 8.1 (Partitions and noncrossing partitions). Recall that a parti-
tion of a set is a pairwise disjoint collection of subsets (called blocks) whose
union is the entire set. These partitions are naturally ordered by refine-
ment, i.e. one partition is less than another is each block of the first is
contained in some block of the second. The resulting bounded graded lat-
tice is called the partition lattice. Its maximal element has only one block,
its minimal element has singleton blocks and the rank of an element is de-
termined by the number of blocks it contains. When the underlying set is
[n] = {1, 2, . . . , n} the partition lattice is denoted Πn and it has rank n− 1.
The rank 3 poset Π4 is shown in Figure 15. A noncrossing partition is a
partition of the vertices of a regular n-gon (consecutively labeled by the set
[n]) so that the convex hulls of its blocks are pairwise disjoint. Figure 16
shows the noncrossing partition {{1, 4, 5}, {2, 3}, {6, 8}, {7}}. A partition
such as {{1, 4, 6}, {2, 3}, {5, 8}, {7}} would be crossing. For n = 4, the only
difference between Π4 and NC4 is the partition {{1, 3}, {2, 4}} which is
not noncrossing. The subposet of noncrossing partitions is also a bounded
graded rank n lattice. In addition, NCn is self-dual in the sense that there
exists an order-reversing bijection from NCn to itself ([4],[11]).

The close connection between the braid groups and the noncrossing par-
tition lattice can briefly be described as follows. There is a way of pairwise
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Figure 16. A noncrossing partition of the set [8].

identifying faces of the orthoscheme complex of NCn by isometries so that
the result is a one-vertex complex X with a contractible universal cover and
the n-string braid group as its fundamental group. See [4] for details. More-
over, under the orthoscheme metric, the metric space X metrically splits as
a direct product of a compact PE complex Y and a circle of length

√
n. We

should note, however, that this split is not visible in the cell structure of X.
The splitting into a direct product is easiest to see in the universal cover
X̃ ∼= Ỹ × R where the standard n-orthoschemes naturally fit together into
columns.

Definition 8.2 (Columns). Fix n ∈ N and consider the following collec-
tion of points in Rn. For each integer m write m = qn + r where q and
r are the unique integers with 0 ≤ r < n and let vm denote the point
((q + 1)r, qn−r) ∈ Rn using the same shorthand notation as in the proof of
Proposition 4.8. To illustrate, when m = −22 and n = 8 then q = −3, r = 2
and v−22 = (−22,−36). Note that the vector from vm to vm+1 is a unit basis
vector and that the particular unit basis vector is specified by the value of
r. In particular, any n + 1 consecutive vertices of the bi-infinite sequence
(. . . v−2, v−1, v0, v1, v2 . . .) are the vertices of a standard n-orthoscheme. It
is easy to check that the standard n-orthoscheme Ortho(v0, v1, . . . , vn) is de-
fined by the inequalities 1 ≥ x1 ≥ x2 ≥ · · · ≥ xn ≥ 0 and that the union of
the orthoschemes defined by n+ 1 consecutive vertices of this sequence is a
convex shape defined by the inequalities x1 ≥ x2 ≥ · · · ≥ xn ≥ x1 − 1. We
call this configuration of orthoschemes a column. Because these equalities
are invariant under the addition of multiples of the vector (1n), the result is
metrically a direct product of a (n−1)-dimensional shape with the real line.
It turns out that the cross-section perpendicular to the direction (1n) is a
Euclidean polytope known as the Coxeter simplex of type Ãn−1 and that
every vertex of this polytope has a link isometric to the diagonal link of
the standard n-orthoscheme, namely, the convex spherical polytope of type
An−1 that we called αn−1. To illustrate, when n = 3 the column just defined
is a direct product of an Ã2 Euclidean polytope with R and the diagonal
link of a 3-orthoscheme is the spherical polytope of type A2. In this case
the PE shape Ã2 is an equilateral triangle and the PS shape A2 is an arc of
length π

3 .
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Returning to the Eilenberg-MacLane space for the n-string braid group,
recall that a group is called a CAT(0) group if it acts properly discontin-
uously cocompactly by isometries on a complete CAT(0) space. For our
purposes, the only fact we need is that the fundamental group of any com-
pact locally CAT(0) PE complex is a CAT(0) group since its action on the
universal cover by deck transformations has all of the necessary properties.
If X is the Eilenberg-MacLane space for the n-string braid group built from
the orthoscheme complex of the noncrossing partition lattice NCn, then as
a metric space X is a direct product of a circle of length

√
n and a PE com-

plex Y built out of Ãn−1 shapes. Moreover, the link of the unique vertex
in Y is isometric to the diagonal link of NCn. As a consequence, if the
orthoscheme complex of the noncrossing partition lattice NCn is CAT(0),
then Y is locally CAT(0), X is locally CAT(0) and the n-string braid group
is a CAT(0) group. In short we have the following implication.

Proposition 8.3 (Partitions and braids). If the orthoscheme complex of the
noncrossing partition lattice NCn is CAT(0), then the n-string braid group
is a CAT(0) group.

Since we (firmly) believe that the orthoscheme complex of NCn is indeed
CAT(0) for every n, we formalize this assertion as a conjecture.

Conjecture 8.4 (Curvature of NCn). For every n, the orthoscheme com-
plex of the noncrossing partition lattice NCn is CAT(0) and as a conse-
quence, the braid groups are CAT(0) groups.

One reason we believe that Conjecture 8.4 is true has to do with the close
connection between noncrossing partitions, partitions and linear subspaces.

Remark 8.5 (Partitions and linear subspaces). If F is a field and Fn is a
vector space with a fixed coordinate system then there is a natural injective
map from Πn to Ln(F) that sends each partition to the subspace of vectors
where the sum of the coordinates whose indices all belong to the same block
sum to 0. For example, the partition {{1, 3, 4}, {2, 5}, {6}, {7}} is sent to
the 3-dimensional subspace of F7 satisfying the equations x1 + x3 + x4 = 0,
x2 + x5 = 0, x6 = 0, and x7 = 0. The partition with one singleton blocks is
sent to the 0-dimensional subspace and the partition with one block is sent
to the (n − 1)-dimensional subspace where all coordinates sum to 0. Thus
the map from Πn to Ln(F) can be restricted to a map from Πn to Ln−1(F)
but at the cost of being harder to describe. The relationship between the
noncrossing partition lattice, the partition lattice and the lattice of linear
subspaces is therefore NCn ⊂ Πn ↪→ Ln−1(F).

As we remarked earlier, the diagonal link of Ln−1(F) is a CAT(1) complex
known as a thick spherical building. Thus, the inclusion just established
means that the diagonal link of NCn is a subcomplex of a thick spherical
building. For those familiar with the structure of buildings, we note that a
much stronger statement is true.
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Proposition 8.6 (Partitions and apartments). Every chain in NCn belongs
to a boolean subposet. As a consequence, for every field F, the diagonal link
of NCn is a union of apartments in the thick spherical building constructed
as the diagonal link of Ln−1(F).

Proof sketch. Since Proposition 8.6 is not needed below, we shall not give a
complete proof, but the rough idea goes as follows. Every chain of noncross-
ing paritions can be extended to a maximal chain, and given any maximal
chain, it is possible to systematically extract a planar spanning tree of the
regular n-gon with edges labeled 1 through n − 1 such that the connected
components of the graph containing only edges 1 through i are the blocks
of the rank i noncrossing partition in the chain. Once such a labeled span-
ning tree has been found, the noncrossing partitions that arise from the
connected components of the graph with an arbitrary subset of these edges
form a boolean subposet of NCn. The second assertion follows since boolean
subposets give rise to spheres in the diagonal link that are the apartments
of the spherical building. �

The fact that the diagonal link of NCn is a union of apartments inside a
thick spherical building is circumstantial evidence that the diagonal link is
CAT(1), the orthoscheme complex of NCn is CAT(0) and that the corre-
sponding Eilenberg-MacLane space for the n-string braid group is CAT(0).
By Theorem A, these conjectures are true for n = 5.

Proposition 8.7 (Curvature of NC5). The orthoscheme complex of NC5 is
CAT(0) and, as a consequence, the 5-string braid group is a CAT(0) group.

Proof. Since the rank 4 poset NC5 is known to be a lattice, by Theorem A
and Proposition 7.4 we only need to check thatNC5 does not contain a global
spindle of girth 6 whose elements alternate between adjacent ranks. More-
over, because NC5 is self-dual, it is sufficient to rule out the configuration
on the lefthand side of Figure 9. Finally, if there were such a configuration,
the three rank 1 elements would correspond to noncrossing parititions each
containing a single edge and the fact that they pairwise have rank 2 joins
indicates that these edges are pairwise noncrossing. But under these condi-
tions, the join of all three elements will have rank 3 contrary to the desired
configuration. Thus NC5 has no short spindles, its orthoscheme complex is
CAT(0) and the 5-string braid group is a CAT(0) group. �

We should note that we originally proved that the 5-string braid group
is a CAT(0) group in a more direct fashion (unpublished) shortly after
the first author introduced his new Eilenberg-MacLane spaces for the braid
groups [4], a direct computation carried out independently and contempo-
raneously by Daan Krammer (also unpublished). And finally, we indicate
how the above analysis of the 5-string braid group can be extended to cover
the other four-generator Artin groups of finite-type. The posets and com-
plexes defined via the symmetric group in [4] were extended to the other
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finite Coxeter groups in [5]. The first author’s work with Colum Watt pro-
duces bounded graded lattices with a uniform definition that can be used
to construct Eilenberg-MacLane spaces for groups called Artin groups of
finite-type. We begin by roughly describing these additional posets.

Definition 8.8 (W -noncrossing partitions). Let W be a finite Coxeter
group with standard minimal generating set S and let T be the closure
of S under conjugacy. The set S is called a simple system and T is the set
of all reflections. A Coxeter element in W is an element δ that is a product
of the elements in S in some order. For the finite Coxeter groups, the order
chosen is irrelevant since the result is well-defined up to conjugacy. The
poset of W -noncrossing partitions NCW is the derived from the minimum
length factorizations of δ into elements of T or equivalently, it represents
an interval in the Cayley graph of W with respect to T that starts at the
identity and ends at δ. The name alludes to the fact that when W is the
symmetric group Symn, a Coxeter element is an n-cycle and the poset NCW
is isomorphic to the lattice of noncrossing partitions previously defined.

For each finite Coxeter group W , the poset NCW is a finite bounded
graded lattice whose rank n is the size of the standard minimal generating
set S for W . As was the case with the braid groups, there is a one-vertex
complex X constructed by identifying faces of the orthoscheme complex
of NCW . This complex splits as a metric direct product of a complex Y

constructed from Ãn−1 shapes and a circle of length
√
n, and the universal

cover X̃ decomposes into columns as before. In particular, X̃ is isometric
with Ỹ × R, the link of the unique vertex of Y is isometric to the diagonal
link of the orthoscheme complex of NCW , and we have the following result
that generalizes Proposition 8.3.

Proposition 8.9 (Partitions and Artin groups). Let W be a finite Cox-
ter group and let NCW be its lattice of noncrossing partitions. If the or-
thoscheme complex of NCW is CAT(0) then the finite-type Artin group cor-
responding to W is a CAT(0) group.

When W has a standard minimal generating set of size 4, the poset NCW
has rank 4 and Theorem A can be applied as above. Each of the five possible
posets (corresponding to the finite Coxeter groups of type A4, B4, D4, F4

and H4) is known to be a lattice and thus by Proposition 7.4 we only need
to check whether or not NCW contain a global spindle of girth 6 whose
elements alternate between adjacent ranks. Moreover, because NCW is self-
dual ([11]), it is sufficient to search for the configuration on the lefthand side
of Figure 9. The second author wrote a short program in GAP to construct
these posets and to search for this particular configuration. The noncrossing
posets of type A4 and B4 contain no such configurations but the noncrossing
posets of type D4, F4 and H4 do contain such configurations. By Theorem A
and Proposition 8.9, this establishes the following.
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Theorem B (Artin groups). Let K be the Eilenberg-MacLane space for a
four-generator Artin group of finite type built from the corresponding poset of
W -noncrossing partitions and endowed with the orthoscheme metric. When
the group is of type A4 or B4, the complex K is CAT(0) and the group is a
CAT(0) group. When the group is of type D4, F4 or H4, the complex K is
not CAT(0).
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