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Abstract. The pure symmetric automorphism group of a finitely generated
free group consists of those automorphisms which send each standard generator
to a conjugate of itself. We prove that these groups are duality groups.

1. Introduction

Let Fn be a finite rank free group with fixed free basis X = {x1, . . . , xn}. The
symmetric automorphism group of Fn, hereafter denoted Σn, consists of those au-
tomorphisms that send each xi ∈ X to a conjugate of some xj ∈ X . The pure

symmetric automorphism group, denoted PΣn, is the index n! subgroup of Σn of
symmetric automorphisms that send each xi ∈ X to a conjugate of itself. The
quotient of PΣn by the inner automorphisms of Fn will be denoted OPΣn. In this
note we prove:

Theorem 1.1. The group OPΣn is a duality group of dimension n − 2.

Corollary 1.2. The group PΣn is a duality group of dimension n − 1, hence Σn

is a virtual duality group of dimension n − 1.

(In fact we establish slightly more: the dualizing module in both cases is
�

-free.)
Corollary 1.2 follows immediately from Theorem 1.1 since Fn is a 1-dimensional

duality group, there is a short exact sequence

1 → Fn → PΣn → OPΣn → 1

and any duality-by-duality group is a duality group whose dimension is the sum of
the dimensions of its constituents (see Theorem 9.10 in [2]).

That the virtual cohomological dimension of Σn is n − 1 was previously estab-
lished by Collins in [9]. In more recent work, Gutiérrez and Krstić have shown
that Σn has a regular language of normal forms [11], and Orlandi-Korner has com-
puted the BNS-invariant of PΣn [13]. Bogley and Krstić have recently announced
a computation of the integral homology of the groups Σn [4].

We establish Theorem 1.1 using a variation on the Main Theorem of [8] which is
presented in Section 3. To apply this type of theorem, we need a contractible space
on which OPΣn acts where the cell stabilizers are duality groups of the appropriate
dimensions. Such a space has, in fact, already been constructed by McCullough
and Miller in [12]. In Section 4 we review their construction and the properties of
the stabilizers. Lastly we need to establish that the fundamental domain for this
action is a Cohen-Macaulay complex. This is shown in Section 5. The final section
contains various open questions related to these groups.
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2. Duality Groups

In [3] Bieri and Eckmann introduced a class of groups, called duality groups,
whose cohomology behaves like the cohomology of compact manifolds.

Definition 2.1 (Duality groups). Let G be an FP group of cohomological dimen-
sion n. The group G is an n-dimensional duality group if there exists a G-module
D (called the dualizing module) such that H i(G, M) ' Hn−i(G, D ⊗ M) for all
integers i and for all G-modules M . Equivalently, G is a duality group if its coho-
mology with group ring coefficients is torsion free and concentrated in dimension n.
The dualizing module is this case is Hn(G,

�
G). A group G is said to be a virtual

duality group if it has a finite index subgroup that is a duality group. See [2] and
[7] for further information on duality properties for groups.

Example 2.2. The simplest examples of duality groups are the free and free
abelian groups. Finitely generated free groups are 1-dimensional duality groups
and the free abelian group

�
n is an n-dimensional duality group since it admits

a manifold K(π, 1) of dimension n = cd(
�

n). The braid group Bn is a duality
group of dimension n − 1 (this is discussed in section 6), and the group Aut(Fn)
is a virtual duality group of dimension 2n − 2 [1]. Since the braid group Bn is a
subgroup of Σn, and Σn is a subgroup of Aut(Fn), Σn is sandwiched between two
virtual duality groups, thus lending credence to our Main Theorem.

3. Actions on posets

In this paper we use a theorem on group actions on simplicial complexes arising
from actions on posets that was developed (but not stated) in [8]. Before discussing
this theorem we establish some terminology.

Definition 3.1 (Posets). We will assume that all posets are finite dimensional,
that is, that the geometric realizations |P| are finite dimensional. A poset P is
graded if all its maximal chains have the same length. If ς is an element of a poset
P , the rank of ς is the length of an unrefinable chain from a minimal element of
P to ς . Thus minimal elements have rank zero, and if P is graded, all maximal
elements have rank equal to the dimension of |P|. If P is graded, then one can
define the corank of ς ∈ P to be crk(ς) ≡ d− rk(ς) where d is the dimension of |P|.
Although this definition of rank is slightly non-standard, it simplifies the notation
in this context.

Definition 3.2 (Cohen-Macaulay). A finite dimensional simplicial complex K is
Cohen-Macaulay if

H̃i(lk(σ),
�

) = 0

for all simplices σ and for all i < dim(lk(σ)). Note: We allow σ to be the empty
simplex, in which case lk(σ) is all of K. A poset P is said to be Cohen-Macaulay if
its geometric realization |P| is Cohen-Macaulay.

It’s known that if G is a group of type FP , with cd(G) = n, and G acts on a
contractible complex X where the stabilizer of each cell σ is an (n−|σ|)-dimensional
duality group, then G is an n-dimensional duality group (Corollary to Theorem A
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in [8]). However, one often constructs group actions by having a group act on a
poset, thereby getting an action on the geometric realization of that poset. In such
a situation, the nice duality between the dimension of a cell and the dimension
of its stabilizer will not hold. For example, each and every element of the poset
will contribute a vertex to the geometric realization, thus the collection of vertex
stabilizers will consist of the stabilizers of each and every element of the poset.

Recall that an action of G on a cellular complex X has a strong fundamental

domain F if F is a subcomplex of X and the natural map F → G\X is a bijection.
We say that a G-poset P has a strong fundamental domain if there is a subposet
F ⊂ P which is a filter (if ς ∈ F and τ > ς , then τ ∈ F) and which contains unique
representatives of each G-orbit in P . If F is a strong fundamental domain for the
G-action on P , it follows that |F| is a strong fundamental domain for the G-action
on |P|.

Theorem 3.3. Let G be a group of type FP , with cd(G) = n. Let G act on a

poset P, whose geometric realization |P| is contractible, and where there is a strong

fundamental domain F ⊂ P that is finite and Cohen-Macaulay. If the stabilizer

of each element ς ∈ P is an (n − crk(ς))-dimensional duality group, then G is an

n-dimensional duality group.

If in addition to the conditions above, it’s also true that the dualizing modules of

the stabilizers are all
�

-free, then the dualizing module of G is
�
-free.

The proof of this theorem is essentially given in §7 of [8], but there it was
developed for a specific application to Artin groups, and it is presented in that
context. A reader interested in this theorem, but not particularly interested in
Artin groups, would find it difficult to generalize the argument in [8] in order to
construct the proof of Theorem 3.3. Thus we quickly run through an outline of the
proof.

Outline of proof. Because G is FP and cd(G) = n, in order to establish duality it
suffices to establish that the cohomology of G with

�
G coefficients is concentrated

in dimension n and is
�

-torsion free.
We express H∗(G,

�
G) in terms of the equivariant cohomology for the action of

G on |P|, H∗
G(|P|). The standard equivariant spectral sequence arises from filtering

a space by skeleta (see for example §VII.7 in [7]). However, our filtration of |P| is
by G-equivariant subcomplexes that are more naturally related to the underlying
poset structure. We let |P|0 denote the subcomplex constructed using only corank
0 elements; this should be thought of as the collection of ‘vertices’ for this complex.
In general, |P|i consists of the geometric realization of the subposet consisting
of corank k elements for 0 ≤ k ≤ i. In essence, we are replacing the notion of
“dimension” with the notion of “corank”.

If ς ∈ P then let P>ς and P≥ς denote the subposets of all elements greater than
(greater than or equal to) ς in P . We let the stabilizer of ς under the action of G
be denoted Gς .

Because F is a strong fundamental domain, the relative chains C(|P|p, |P|p−1)
can be expressed in terms of induced modules based at the fundamental domain:

⊕

crk(ς)=p,ς∈F

C (|F≥ς |, |F>ς |) ↑
G

Gς
.

Let F be a finite projective resolution of
�

as a
�

G-module. Then
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HomG

(
F, Hom � (C(|P|p, |P|p−1),

�
G)

)

=
⊕

crk(ς)=p,ς∈F

HomG

(
F, Hom �

(
C (|F≥ς |, |F>ς |) ↑

G

Gς
,

�
G

))

=
⊕

crk(ς)=p,ς∈F

HomGς
(F, Hom � (C (|F≥ς |, |F>ς |) ,

�
G))

It follows that

Ep,q
1 = Hp+q

G (
(
|P|p, |P|p−1

)
,

�
G) =

⊕

crk(ς)=p,ς∈F

Hp+q
Gς

((|F≥ς |, |F>ς |) ,
�

G)

=
⊕

crk(ς)=p,ς∈F

Hq(Gς , H
p((|F≥ς |, |F>ς |) ,

�
G))

Where the last equality uses the Cohen-Macaulay hypothesis. The pair (|F≥ς |, |F>ς |)
is a cone over the link of the vertex associated with ς in |F≥ς |, relative to the link.
If σ = ς0 < ς1 < · · · < ς is an unrefinable chain in F starting with a minimal
element and ending with the element ς , then the link of ς in |F≥ς | is the same
as the link of the simplex |σ| associated with the chain σ in |F|. The dimension
of |σ| is the rank of ς , thus by the Cohen-Macaulay hypothesis, this link has the
homology of a wedge of spheres of dimension d− rk(ς)−1 where d is the dimension
of |P|. So (|F≥ς |, |F>ς |) has the homology of a wedge of (d − rk(ς))-spheres. But
(d − rk(ς)) = crk(ς) = p, hence the relative homology is trivial except in dimension
p where it’s free abelian. Thus

Hp((|F≥ς |, |F>σ |),
�

G) = Hom(Hp(|F|≥σ , |F|>σ),
�

G) =
⊕ �

G

Tracing back through the equalities we see

Ep,q
1 =

∏

crk(ς)=p,ς∈F

Hq(Gς ,
⊕ �

G).

Because the stabilizer Gς is an (n − p)-dimensional duality group, and
�

G as a
�

Gς-module is a sum of
�

Gς’s, Ep,q
1 is

�
-torsion free when q = n − p, and is zero

otherwise. It follows that the entire spectral sequence lies in total degree p+ q = n.
Because all the entries below the nth-diagonal are zero, Hq(G,

�
G) = 0 below

dimension n; since each Gς is an FP group, cohomology commutes with direct
sums, hence Hn(G,

�
G) is

�
-torsion free. If the stabilizers all have

�
-free dualizing

modules, then the Ep,q
1 term is actually

�
-free (for p + q = n), hence the dualizing

module of G is also
�

-free.

4. The McCullough-Miller Complex

In [12] McCullough and Miller introduced a family of contractible complexes
which admit actions by certain automorphism groups of free products. They con-
struct in particular a complex on which OPΣn acts cocompactly. The fundamental
domain for the action of OPΣn on this space is the geometric realization of a finite
poset associated to certain trees. This fundamental domain will be described first,
followed by a description of the entire complex.
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Definition 4.1 ([n]-labelled bipartite trees). Let [n] ≡ {1, . . . , n}. An [n]-labelled
bipartite tree is a tree T together with a bijection from [n] to a subset of its vertex
set such that the image of [n] includes all of the vertices of valence 1 and for every
edge in T exactly one of its endpoints lies in the image of [n]. Several [4]-labelled
bipartite trees are shown in Figure 1.

The vertices that lie in the image of [n] are called labelled vertices and we use
vi to denote the vertex labelled by i. Two labelled bipartite trees are considered
to be equivalent if there is a label preserving graph isomorphism between them. If
there are m unlabelled vertices in a labelled bipartite tree T , then the rank of T is
m− 1. (Note: In [12] there is an alternative definition of “rank”; a short induction
argument proves their definition is equivalent to our definition.)

Let T be a labelled bipartite tree with two distinct edges e1 and e2 which share
a common labelled endpoint v and whose unlabelled endpoints are u1 and u2 re-
spectively. Let T ′ be the tree obtained from T by identifying the edges e1 and e2

as well as the vertices u1 and u2. We say that the tree T ′ is obtained from T by
folding at v. Notice that folding reduces the rank of a tree by 1. For example, in
Figure 1, C can be folded at 2 to produce B, B can be folded at 3 to produce A,
and D can be folded at 3 to produce B.

A =

1

2 3

4

C =
1 2 3 4

B =

1

2

3 4
D =

1

2
3

4

Figure 1. Examples of [4]-labelled bipartite trees.

Definition 4.2 (Whitehead poset). The Whitehead poset Wn is the poset consist-
ing of all [n]-labelled bipartite trees under the partial order induced by folding.
Specifically, T ′ ≺ T if one can obtain T ′ from T by a sequence of foldings. In the
poset Wn there is a single element of rank 0 called the nuclear vertex. It consists
of an unlabelled vertex of valence n and n labelled vertices of valence 1. (See for
example tree A in Figure 1.) Let T be an [n]-labelled bipartite tree. We note that
the definitions of rank have been chosen so that the rank of T as an [n]-labelled
bipartite tree (Definition 4.1) agrees with rank of T as an element of the poset Wn

(Definition 3.1).

Lemma 4.3. The Whitehead poset Wn is graded.

Proof. Let T be an [n]-labelled bipartite tree. If T contains a labelled vertex vi

with valence greater than 1 then T can be folded at vi to obtain a tree of smaller
rank. This shows that repeatedly folding any such tree will eventually result in the
nuclear element. In particular, every unrefinable chain must start at the nuclear
element. On the other hand, if T contains an unlabelled vertex of valence greater
than 2, then T can be unfolded to a tree of higher rank. Thus the other end of
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an unrefinable chain is the barycentric subdivision of a tree with exactly n vertices
and n − 1 edges. Since the unique minimum element in Wn has rank 0, all of the
maximal elements have rank n − 1, and every unrefinable chain changes the rank
by 1 each time, every maximal chain has the same length.

A

D D D D

Figure 2. The poset W4

Example 4.4 (W4 and W5). The number of elements in Wn grows quite rapidly.
For example, |W3| = 4, |W4| = 29 and |W5| = 311. The poset W4 is illustrated
in Figure 2. The letters used to label an element of W4 in Figure 2 are meant to
indicate which of the trees in Figure 1 this element resembles when the [4]-labelling
is ignored. Thus the four vertices labelled D represent trees isomorphic to the
tree labelled D in Figure 1 and the vertex labelled A, the nuclear vertex for W4,
represents a tree isomorphic to the tree labelled A. Using this convention, all of
the unlabelled vertices in the top row should be labelled C and all of the unlabelled
vertices in the middle row should be labelled B. (See also Figure 8 in [12].)

The poset W5 is too large to represent in the manner of Figure 2. However,
the link of the nuclear vertex is a 2-complex with a natural label permuting action
by the 5-element symmetric group. The fundamental domain under this action
consists of 11 2-simplices as illustrated in Figure 3; the quotient of the link under
this action is formed by identifying the three edges labelled with orientations. The
rank of each vertex is indicated by its shape.

Definition 4.5 (Markings). A marking of a labelled bipartite tree T consists of a
basis of Fn, which we’ll denote {y1, . . . , yn}, where the element yi is a conjugate of
xi ∈ X , and is associated with the vertex labelled i in T .

Definition 4.6 (Marked automorphisms). An automorphism α ∈ PΣn is carried

by a marked, [n]-labelled, bipartite tree T if:

1. There is an element yi marking a vertex vi ∈ T , and α(yi) = yi;
2. For each vertex vj (j 6= i), α(yj) is a conjugate of yj via some power of yi;
3. If vj and vk are in the same component of T\{vi} then yj and yk are conju-

gated by the same power of yi.

Definition 4.7 (MMn). The McCullough-Miller complex MMn is the simplicial
realization of the poset of marked, [n]-labelled, bipartite trees, modulo the equiva-
lence relation generated by identifying two such trees if there is an automorphism
carried by one that results in the other.
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2
5

3 14

123
4

5

1
2

3 4
5

3
1

2

4

5

1

23

4

5

1

2 3

4

521 3 4 5

123

4

5

3
4 521

12
3

4
5

Figure 3. The quotient of the link of the nuclear vertex in W5,
under the action of the 5-element symmetric group.

Theorem 4.8 (McCullough-Miller [12]). The complex MMn is a contractible com-

plex of dimension n − 2.

The group PΣn acts on MMn by permuting the markings. The fundamental
domain consists of the copy of Wn obtained by restricting to markings using the
basis X = {x1, . . . , xn}; it is a strong fundamental domain under the action of PΣn.
Given the equivalence relation, the group of inner automorphisms acts trivially on
MMn, hence the action of PΣn yields an action of the quotient group OPΣn. The
stabilizer of a vertex in MMn, corresponding to a marked labelled bipartite tree T ,
consists of all automorphisms that can be expressed as a product of automorphisms
that are carried by T . In Section 5 of [12], McCullough and Miller compute these
stabilizers for various group actions. In the specific case of OPΣn, they show the
following:

Lemma 4.9. Under the action of OPΣn, the stabilizer of a rank k vertex of MMn

is a free abelian group of rank k. In particular, this stabilizer is a k-dimensional

duality group.

5. The “Cohen-Macaulayness” of Wn

In order to apply Theorem 3.3, it only remains to establish that the poset Wn is
Cohen-Macaulay. We do this via a technique of Björner and Wachs [6]. Specifically,
we will establish that a closely related poset has a recursive atom ordering. Once
this has been shown, the shellability and the “Cohen-Macaulayness” of Wn will
follow easily using only standard results. First we recall some definitions.

Definition 5.1 (Shellable). Let P be a finite, graded poset, and let |P | be its
geometric realization. The maximal simplices of |P | correspond to maximal chains
in P and are called facets. The poset P is shellable if the facets can be totally
ordered {σ1, σ2, . . . , σn} so that σi+1 ∩ {∪i

n=1σn} is a union of codimension one
faces of σi+1.
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It is well-known that shellability implies Cohen-Macaulay, so it is sufficient to
establish that Wn is shellable. Actually, shellability implies a slightly stronger
condition. Shellable simplicial complexes are homotopy Cohen-Macaulay, that is,
πi(lk(σ)) is trivial for all σ and all i < dim(lk(σ)), but this stronger statement
is not necessary to establish duality. To show shellability we use recursive atom
orderings.

Definition 5.2 (Recursive atom ordering). In a poset, y covers x if x < y and
x < z ≤ y implies z = y. The atoms of a bounded, graded poset P are those
elements that cover the minimum element 0̂. A bounded, graded poset P admits
a recursive atom ordering if the length of P is one or if the length of P is greater
than one and there is an ordering a1, . . . , at of the atoms of P that satisfies:

1. For all j = 1, 2, . . . , t, the interval [aj , 1̂] admits a recursive atom ordering in

which the atoms of [aj , 1̂] that come first in the ordering are those that cover
some ai where i < j.

2. For all i < j, if ai, aj < y then there is a k < j and an element z such that z
covers ak and aj , and z ≤ y.

In [6] Björner and Wachs establish the following result:

Lemma 5.3. (Proposition 2.3 & Theorem 3.2 in [6]) Any bounded, graded poset

that admits a recursive atom ordering is shellable, and therefore Cohen-Macaulay.

Recall that a poset P is bounded if there is a minimal element 0̂ that is less than all
other elements in P , as well as a maximal element 1̂ that is greater than all other
elements in P .

A particularly strong result is available for totally semimodular posets.

Definition 5.4 (Semimodular). A graded poset P is semimodular if it is bounded
and whenever two distinct elements u, v ∈ P cover x ∈ P there is a z ∈ P which
covers both u and v. A graded poset P is totally semimodular if it is bounded and
all intervals [x, y] are semimodular.

Lemma 5.5 (Theorem 5.1 in [6]). A graded poset P is totally semimodular if and

only if for every interval [x, y] of P , every ordering of the atoms in [x, y] is a

recurvsive atom ordering.

The key technical result in this section is that the poset Zn, defined below, has
a recursive atom ordering.

Definition 5.6 (Zn). Let Zn be the poset obtained from Wn by taking the dual

poset and adding a minimal element 0̂. (So 0̂ < T for all T ∈ Zn\{0̂}.) Since the
dual of Wn already has a unique maximal element, namely the nuclear vertex, the
poset Zn is a bounded, graded poset. We adopt the standard notation and denote
the nuclear vertex, thought of as an element of Zn, by 1̂. Thus, in Zn one has
T < T ′ if and only if T = 0̂, or T 6= 0̂ and one can convert T to T ′ by a sequence
of folds. The poset Z4 is shown in Figure 4.

Lemma 5.7. For each T ∈ Zn which is not equal to 0̂, the interval [T, 1̂] is totally

semimodular.

Proof. Let T ′ be any tree in [T, 1̂] and let S and S′ be two trees in the interval that
cover T ′. If S and S′ resulted from folds in T ′ that occur at different vertices of
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nuclear = 1̂

0̂

Figure 4. The poset Z4.

T ′, then it is clear that there is a tree Z ∈ [T, 1̂] covering both S and S ′ since the
set of edges incident to a vertex vi are identical before and after a fold at a vertex
vj , so long as i 6= j. If S and S ′ result from folds at the same vertex, then either
two distinct pairs of edges are being folded together, or the folds have an edge in
common. In either event, there is a tree Z covering S and S ′ gotten by performing
both folds.

It follows from Lemma 5.7 and Lemma 5.5 that any ordering of the atoms in Zn

gives a recursive atom ordering on intervals. Thus the first condition can always
be satisfied, and we can turn our attention to the second condition. The recursive
atom ordering of the atoms of Zn will be based on the following partial ordering of
[n]-trees.

Definition 5.8 (Depth ordering). Every [n]-tree can be rooted at 1 and drawn in
the standard fashion for rooted trees as in Figure 5. We say the labelled vertices of
T immediately below 1 in such a drawing are at “level 1”. If we think of an [n]-tree
T as a metric tree where each edge has length 1/2, then the vertices at level 1 are
precisely those that are a distance 1 from the vertex v1, i.e. the vertex labelled 1.
In general, the level of a labelled vertex v is simply d(v1, v).

1

3 4

2 5 level 1

level 2

6

Figure 5. Depth of vertices.

The depth of an [n]-tree T is its maximum level, or equivalently, the radius of
T with center v1. Our partial ordering is given first by depth “d”, then by the
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number of labelled vertices at level d, then by the number of vertices at level d-1,
and so on. Finally, we extend this partial ordering of [n]-trees to a total ordering
arbitrarily. We denote this total ordering by <depth.

Definition 5.9 (Drops and splits). Let T be any [n]-tree. We divide the unfold-
ings of T into two groups: “drops” and “splits”. The terminology is transparent
when one views T as being rooted at the vertex labelled 1. Since a fold identifies
two edges at a folding vertex v, an unfold divides an edge incident to the unfolding
vertex v. A split is any unfolding where the edge being divided hangs below the
unfolding vertex. A drop is any unfolding where the edge being divided is above the
unfolding vertex. A drop based at the unfolding vertex v will move certain labelled
vertices at the same level as v down one level. The foldings which reverse a drop
or a split will be called lifts and merges respectively. See Figure 6 and Figure 7 for
illustrations.

6

1

3 4

5
2

56

4

2 3

1

lift

drop

Figure 6. Dropping and lifting.

6

1

3 4

5

1

2
56

4

2
split

merge

3

Figure 7. Splitting and merging.

The following lemma is immediate from the definitions.

Lemma 5.10. If S results from T by a drop, then T lies strictly below S in the

depth partial order.

The atoms of Zn consist of all [n]-trees where the unlabelled vertices have valence
2. Equivalently, they are the trees of rank (n − 2). Notice that the minimal atom
in the total order <depth is uniquely determined by the depth partial order; it is

the tree with central vertex labelled 1, all unlabeled vertices with valence 2 and all
other labelled vertices at level 1. It is the unique atom which results by repeatedly
splitting the nuclear vertex.
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Corollary 5.11. Given any [n]-tree T there is a unique atom m(T ) such that T
can be unfolded to m(T ) and m(T ) and T are incomparable in the depth partial

order. Further, if S is any other atom such that T can be unfolded to S, then

m(T ) <depth S.

Proof. You can get from any [n]-tree to an atom using only splits and splits do not
change the data used to define the depth partial order. Further, if one does all
possible splits in any order, then they will always end up at the same tree, which
will be denoted m(T ). On the other hand, if the sequence of unfoldings from T
to an atom S contains a drop, then T is less than S in the depth partial order by
Lemma 5.10, and therefore m(T ) <depth S.

Theorem 5.12. Any total ordering of the atoms of Zn that is compatible with the

depth ordering gives a recursive atom ordering of Zn.

Proof. Let Ti and Tj be two atoms of Zn with Ti less than Tj in the total order
<depth and suppose both [n]-trees can be folded up to an [n]-tree T . To establish

condition 2 in the definition of a recursive atom ordering, we need to find an atom
Tk such that Tk <depth Tj and an element Z ≤ T that is a cover of both Tk and

Tj .

T

Z

Tk Tjm(T ) Ti

dropsplit

Figure 8. Illustration of the proof.

Since Ti is strictly below Tj in the total order <depth, and by Corollary 5.11

either m(T ) = Ti or m(T ) <depth Ti, we know that m(T ) <depth Tj . This shows

that the sequence of unfoldings from T down to Tj must contain at least one drop.
Reverse this sequence of unfoldings and consider the sequence of foldings from Tj

up to T . If a merge is followed by a lift, then one can replace this pair of folds by a
pair beginning with a lift. The argument is essentially that of Lemma 5.7. The only
interesting case is when the folding vertex v is the same for both the merge and lift,
and one first merges two edges e′ and e′′ into one edge e and then lifts e. In this
case the same result occurs if one would first lift e′ and then lift e′′. As a result,
we can choose the sequence of folds so that the first fold at Tj is a lift. Let Z be
the result of this lift and let Tk be the atom m(Z). By Lemma 5.10 Tk <depth Tj ,

Z is a common cover of Tj and Tk, and by construction Z ≤ T in Zn.
This shows that the total ordering on the atoms satisfies condition 2, and as was

mentioned earlier, by Lemma 5.7 and Lemma 5.5 it can be recursively extended
upwards to satisfy condition 1. This completes the proof.

Theorem 5.13. The Whitehead posets Wn are Cohen-Macaulay.
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Proof. By Theorem 5.12, Zn has a recursive atom ordering and thus is Cohen-
Macaulay by Lemma 5.3. The maximal chains of Zn are the same as the maximal

chains of Ŵn where Ŵn is simply the Whitehead poset Wn with a single maximal

element 1̂ attached. Thus any shelling of Zn induces a shelling of Ŵn hence Ŵn is

Cohen-Macaulay. The simplicial complex |Wn| is the link of the vertex 1̂ ∈ |Ŵn|.
The theorem follows since the link of any vertex in a Cohen-Macaulay complex is
Cohen-Macaulay.

6. Further questions

In addition to being realizable as a natural subgroup of Aut(Fn), the group PΣn

arises as a motion group. The pure braid group can be thought of as the group
of motions of n points in the plane; PΣn consists of the motions of the trivial n
component link in S3. This is discussed in [10], where it is pointed out that the
group of motions of n unknotted, unlinked k-spheres in Sk+2 can also be represented
in Aut(Fn). We can denote these groups as PΣk

n, and ask:

Question 6.1. Is there a natural description of the images of the PΣk
n in Aut(Fn)?

Is the representation even faithful? What is the dimension of these groups? Are
they all duality groups?

Perhaps an even more elementary question would be

Question 6.2. Are the groups of motions of non-trivial links in S3 virtual duality
groups, for all non-trivial links? In other words, was the assumption that we were
working with the trivial n component link necessary?

The analogy between PΣn and the pure braid group has led a number of people
to wonder whether duality could be established for these groups as in the pure
braid case. For the pure braid groups there is a natural map PBn � PBn−1 which
is obtained by ignoring the nth strand. Since the kernel of this map is free, an
induction shows that PBn is poly-free. For example, PB3 is F2-by-

�
, and PB4 is

F3-by-(F2-by-
�

), etc.. Thus since a duality-by-duality group is a duality group, of
dimension equal to the sum of the dimensions of the kernel and quotient, PBn is
an (n − 1)-dimensional duality group.

Regretably, there are significant obstructions to extending this argument to PΣn.
The group PΣn is generated by automorphisms αij where αij(xi) = x−1

j xixj and

αij(xk) = xk, if (k 6= i). (Such automorphisms correspond to moving one loop
through another.) The kernel of the natural map PΣn � PΣn−1 is then the
normal subgroup generated by the automorphisms αin and αni, where i ∈ [n − 1].
In particular, this subgroup is not free, since 〈{αin | i ∈ [n − 1]}〉 is free abelian of
rank n−1. Further, 〈{αin, αni | i ∈ [n−1]}〉 is not a normal subgroup of PΣn. Thus
it is not immediately apparent that the kernel of PΣn � PΣn−1 is even finitely
generated.

Question 6.3. What can be said about the kernel of the map PΣn � PΣn−1?

Finally, PΣn has a presentation in which all the defining relations are commu-
tators (see for example [13]). This makes it appear likely that PΣn might be a
CAT(0) group. (This is similar to the belief that braid groups might be CAT(0)
groups.) However, PΣ3 is a 2-dimensional group, and careful computations show
that its presentation 2-complex does not support a CAT(0) metric.
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Question 6.4. Is PΣn a CAT(0) group?

Finally, we remind the reader that Gutiérrez and Krstić have established that
PΣn has a regular language of normal forms, and they have asked if moreover PΣn

is (bi)automatic [11].
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