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ABSTRACT. A sequential dynamical system, orSDS, consists of an undirected graphY , a vertex-
indexed list of local functionsFY , and a wordω over the vertex set, containing each vertex at least
once, that describes the order in which these local functions are to be applied. In this article
we investigate the special case whereY is a circular graph withn vertices and all of the local
functions are identical. The256 possible local functions are known asWolfram rulesand the re-
sulting sequential dynamical systems are calledfinite asynchronous elementary cellular automata,
or ACAs, since they resemble classical elementary cellular automata, but with the important dis-
tinction that the vertex functions are applied sequentially rather than in parallel. AnACA is said
to beω-independentif the set of periodic states does not depend on the choice ofω, and our main
result is that for alln > 3 exactly104 of the 256 Wolfram rules give rise to anω-independent
ACA. In 2005 Hansson, Mortveit and Reidys classified the11 symmetric Wolfram rules with this
property. In addition to reproving and extending this earlier result, our proofs ofω-independence
also provide significant insight into the dynamics of these systems.

Our main result, as recorded in Theorem2.2, is a complete classification of the Wolfram rules
that for alln > 3 lead to anω-independent finite asynchronous elementary cellular automaton,
or ACA. The structure of the article is relatively straightforward. The first two sections briefly
describe how anACA can be viewed as either a special type of sequential dynamical system
or as a modified version of a classical elementary cellular automaton. These two sections also
contain the background definitions and notations needed to carefully state our main result. Next,
we introduce several new notations for Wolfram rules in order to make certain patterns easier to
discern, and we significantly reduce the number of cases we need to consider by invoking the
notion of dynamical equivalence. Sections5 and6 contain the heart of the proof. The former
covers four large classes of rules whose members areω-independent for similar reasons, and the
latter finishes off three pairs of unusual cases that exhibit more intricate behavior requiring more
delicate proofs. The final section contains remarks about directions for future research.

1. SEQUENTIAL DYNAMICAL SYSTEMS

Cellular automata, orCAs, are discrete dynamical systems that have been thoroughly studied
by both professional and amateur mathematicians.1 They are defined over regular grids of cells
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1Stanislaw Ulam and John von Neumann were the first to study such systems, which they did while working at

Los Alamos National Laboratory in the 1940s [9]. The German computer scientist Konrad Zuse proposed in 1969
that the universe is essentially one big cellular automaton [13]. In the 1970s, John Conway invented the Game of
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and each cell can take on one of a finite number of states. In addition, each cell has anupdate
rule that takes its own state and the states of its neighbors as input, and at each discrete time step,
the rules are applied and all vertex states are simultaneously updated.

In the late 1990s, a group of scientists at Los Alamos invented a new type of discrete dy-
namical system that they calledsequential dynamical systems, or SDSs. In anSDS the regular
grids used to define cellular automata are replaced by arbitrary undirected graphs, and the lo-
cal functions are applied sequentially rather than in parallel. Their initial motivation was to
develop a mathematical foundation for the analysis, simulation and implementation of various
socio-technological systems [1, 2, 3, 4].

An SDS has three components: an undirected graphY , a list of local functionsFY , and an
update orderω. Start with a simple undirected graphY with n vertices, label the vertices from1
to n, and recall that theneighborsof a vertex are those vertices connected to it by an edge. IfF
is a finite field and every vertex is assigned a value fromF, then a global state of the system is
described by ann-tupley whoseith coordinate indicates the current state of the vertexi. The set
of all possible states is the vector spaceFn.

Definition 1.1 (Local functions). A function F : Fn → Fn is calledY -local at i if (1) for each
y ∈ Fn, F (y) only alters theith coordinate ofy and (2) the new value of theith coordinate only
depends on the coordinates ofy corresponding toi and its neighbors inY . Other names for such
a function includelocal functionandupdate rule. We useFY to denote a list of local functions
that includes one for each vertex ofY . More precisely,FY = (F1, F2, . . . , Fn) whereFi is a
function that isY -local ati.

It is sometimes convenient to convert a local functionF into another function with a severely
restricted domain and range.

Definition 1.2 (Restricted local functions). If i is a vertex withk neighbors inY , then corre-
sponding to each functionF that isY -local ati, we define a functionf : Fk+1 → F where the
domain is restricted to the coordinates corresponding toi and its neighbors, and the output is the
new valueF would assign to theith coordinate under these conditions. It should be clear thatF
andf contain the same information but packaged in different ways. Each determines the other
and both have their uses. Functions such asF can be readily composed, but functions such asf
are easier to describe explicitly since irrelevant and redundant information has been eliminated.

The local functions that are easiest to describe are those with extra symmetries.

Definition 1.3 (Symmetric and quasi-symmetric rules). Let i be a vertex inY with k neighbors,
let F : Fn → Fn be aY -local function ati and letf : Fk+1 → F be its restricted form. If the
output off only depends on the multiset of inputs and not their order, in other words, if the
states ofi and its neighbors can be arbitrarily permuted without changing the output off , then
f (andF ) are calledsymmetriclocal functions. If they satisfy the weaker condition that at least
the states of the neighbors ofi can be arbitrarily permuted without changing the output, thenF

Life, a two-dimensionalCA, that was later popularized by Martin Gardner [5]. Beginning in 1983, Stephen Wolfram
published a series of papers devoted to developing a theory ofCAs and their role in science [7, 10, 11, 12]. This is
also a central theme in Wolfram’s1280-page bookA New Kind of Science, published in 2002.



ORDER INDEPENDENCE INACAs 3

andf arequasi-symmetric. A list of local functionsFY is symmetric or quasi-symmetric when
every function in the list has this property.

The last component of anSDS is an update order.

Definition 1.4 (Update orders). An update orderω is a finite sequence of numbers chosen from
the set{1, . . . , n} such that every number1 ≤ i ≤ n occurs at least once. If every number
1 ≤ i ≤ n occurs exactly once, then the update order issimple. Let WY denote the collection
of all update orders and letSY denote the subset of simple update orders. The subscriptY
indicates that we are thinking of the numbers in these sequences as vertices in the graphY .
When considering an arbitrary update order, we tend to use the notationω = (ω1, ω2, . . . , ωm)
with m = |ω| (andm ≥ n, of course), but when we restrict our attention to simple update orders,
we switch to the notationπ = (π1, π2, . . . , πn).

Definition 1.5 (Sequential dynamical systems). A sequential dynamical system, or SDS, is a
triple (Y, FY , ω) consisting of an undirected graphY , a list local functionsFY , and an up-
date orderω ∈ WY . If ω is the sequence(ω1, ω2, . . . , ωm), then we construct theSDS map
[FY , ω] : Fn → Fn as the composition[FY , ω] := Fωm ◦ · · · ◦ Fω1 .

With the usual abuse of notation, we sometimes let theSDS map[FY , ω] stand in for the entire
SDS. The goal is to study the behavior of the map[FY , ω] under iteration. In this article we focus
on the set of states inFn that are periodic and we usePer[FY , ω] ⊂ Fn to denote this collection
of periodic states. The set of periodic states is of interest both because it is the codomain of high
iterates of theSDS map and the largest subset of states that are permuted by the map.

Definition 1.6 (ω-independence). A list of Y -local functionsFY is calledω-independentif
Per[FY , ω] = Per[FY , ω′] for all update ordersω, ω′ ∈ WY andπ-independentif Per[FY , π] =
Per[FY , π′] for all simple update ordersπ, π′ ∈ SY .

Everyω-independentFY is trivially π-independent. More surprisingly, Reidys has shown that
these two conditions are, in fact, equivalent.

Theorem 1.7([8]). A list FY of Y -local functions isω-independent iff it isπ-independent.

Even thoughω-independence is too strong to expect generically, there are nonetheless many
interesting classes ofSDSs that have this property, including two classes whereω-independence
is relatively easy to establish.

Proposition 1.8. If for every simple update orderπ ∈ SY , every state inPer[FY , π] is fixed by
theSDS map[FY , π], thenFY is π-independent and thusω-independent.

Proof. If y is fixed by[FY , π], theny is fixed by eachFi in FY (the simplicity ofπ means that
wereFi to change theith coordinate, there would not be an opportunity for it to change back).
Being fixed by eachFi, y is also fixed by[FY , ω] for all ω ∈ WY , which includes all ofSY .
Since this argument is reversible, theSDS maps with simple update orders share a common set
of fixed states. If, as hypothesized, these are the only periodic states for these maps, thenFY is
π-independent, and by Theorem1.7, ω-independent. �

In our second example,ω-independence is essentially immediate.
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Proposition 1.9 (Bijective functions). If every local functionFi in FY is a bijection, then for
every update orderω ∈ WY , Per[FY , ω] = Fn. As a consequenceFY is ω-independent.

Proof. Since everyFi is a bijection, so is theSDS map[FY , ω] and a sufficiently high iterate is
the identity permutation. �

This last result highlights the fact thatω-independence focuses on sets rather than cycles, since
ω-independentSDSs with different update orders quite often organize their common periodic
states into different cycle configurations. In fact, the restrictions ofω-independentSDS maps
with different update orders to their common periodic states can be used to construct a group
encoding the possible dynamics over this set [6].

Collections ofω-independentSDSs also form a natural starting point for the study of stochas-
tic sequential dynamical systems. Stochastic finite dynamical systems are often studied through
Markov chains over their state space but in general this leads to Markov chains with exponen-
tially many states as measured by the number of cells or vertices. Forω-independentSDSs one
is typically able to reduce the number of states in such a Markov chain significantly, at least when
focusing on their periodic behavior.

2. ASYNCHRONOUSCELLULAR AUTOMATA

Some of the simplest (classical) cellular automata are the one-dimensionalCAs known as
elementary cellular automata. In an elementaryCA, every vertex has precisely two neighbors,
the only possible vertex states are0 or 1, and all local functions are identically defined. Since
every vertex has two neighbors, the underlying graph is either a line or a circle and the restricted
form of its common local function is a mapf : F3 → F whereF = F2 = {0, 1} is the field with
two elements. There are28 = 256 such functions, known asWolfram rules, and thus256 types
of elementary cellular automata. Even in such a restrictive situation there are many interesting
dynamical effects to be observed. The focus here is on the sequential dynamical systems that
correspond to these classical elementary cellular automata.

Let Y = Circn denote a circular graph withn vertices labeled consecutively from1 to n,
and to avoid trivialities assumen > 3. (The sequential nature of the update rules in anSDS
makes infinite graphs such as lines unsuitable in this context.) Since these are the only graphs
considered in the remainder of the article, we replace notations such asWY or SY with Wn and
Sn, etc. InCircn we view the vertex labels as residue classes modn so that there is an edge
connectingi to i + 1 for everyi.

Definition 2.1 (Wolfram rules). Let Fi : Fn → Fn be aCircn-local function ati and letfi : F3 →
F be its restricted form. Since the neighbors ofi arei − 1 andi + 1, it is standard to list these
coordinates in ascending order inF3. Thus, a statey ∈ Fn corresponds to a triple(yi−1, yi, yi+1)
in the domain offi. Call this alocal state configurationand keep in mind that all subscripts
are viewed modn. In order to completely specify the functionFi it is sufficient to list how the
ith coordinate is updated for each of the8 possible local state configurations. More specifically,
let (yi−1, yi, yi+1) denote a local state configuration and let(yi−1, zi, yi+1) be the local state con-
figuration after applyingFi. The local functionFi, henceforth referred to as aWolfram rule, is
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completely described by the following table.

(2.1)
yi−1yiyi+1 111 110 101 100 011 010 001 000

zi a7 a6 a5 a4 a3 a2 a1 a0

More concisely, the28 = 256 possible Wolfram rules can be indexed by an8-digit binary number
a7a6a5a4a3a2a1a0, or by its decimal equivalentk =

∑7
i=0 ai2

i. There is thus oneWolfram rule

k for each integer0 ≤ k ≤ 255. For each suchn, k and i let Wolf
(k)
i denote theCircn-local

function Fi : Fn → Fn just defined, letwolf
(k)
i denote its restricted formfi : F3 → F, and let

Wolf(k)
n denote the list of local functions(Wolf

(k)
1 , Wolf

(k)
2 , . . . , Wolf(k)

n ). We say that Wolfram
rulek is ω-independent wheneverWolf(k)

n is ω-independent for alln > 3.

For each update orderω there is anSDS (Circn, Wolf(k)
n , ω) that can be thought of as an

elementaryCA, but with the update functions applied asynchronously (and possibly more than
once). For this reason, such systems are calledasynchronous cellular automataor ACAs. We
now state our main result.

Theorem 2.2. There are exactly104 Wolfram rules that areω-independent. More precisely,
Wolf(k)

n is ω-independent for alln > 3 iff k ∈ {0, 1, 4, 5, 8, 9, 12, 13, 28, 29, 32, 40, 51, 54, 57,
60, 64, 65, 68, 69, 70, 71, 72, 73, 76, 77, 78, 79, 92, 93, 94, 95, 96, 99, 102, 105, 108, 109, 110,
111, 124, 125, 126, 127, 128, 129, 132, 133, 136, 137, 140, 141, 147, 150, 152, 153, 156, 157,
160, 164, 168, 172, 184, 188, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 204, 205,
206, 207, 216, 218, 220, 221, 222, 223, 224, 226, 228, 230, 232, 234, 235, 236, 237, 238, 239,
248, 249, 250, 251, 252, 253, 254, 255}.

The main result of [6] states that precisely 11 of the 16symmetricWolfram rules areω-
independent overCircn for all n > 3. Theorem2.2 significantly extends this result, reproving
it in the process. In addition to identifying a large class ofω-independentACAs, the proof also
provides further insight into the dynamics of these systems at both periodic and transient states
and thus serves as a foundation for the future study of their stochastic properties. We conclude
this section with two remarks about the role played by computer investigations of these systems.

Remark 2.3 (Unlisted numbers). The “only if” portion of this theorem was established experi-
mentally. For each4 ≤ n ≤ 9, for each0 ≤ k ≤ 255, and for each simple update orderπ ∈ Sn,
a computer program written by the first and third authors calculated the setPer[Wolf(k)

n , π]. For
each of the 152 values ofk not listed above, there were distinct simple update orders that led to
distinct sets of periodic states, leaving the remaining 104 rules as the only ones with the potential
to beω-independent for alln > 3. Moreover, since a counterexample for one value ofn leads
to similar counterexamples for all multiples ofn, these104 rules are also the only ones that are
eventuallyω-independent for all sufficiently large values ofn. Because these brute-force calcu-
lations are explicit yet tedious they have been omitted, but the interested reader should feel free
to contact the third author for a copy of the software that performed the calculations.

Remark 2.4 (Computational guidance). These early computer-aided investigations also had a
major impact on the “if” portion of the proof. Once the computer results highlighted the 104
rules that wereω-independent for small values ofn, we identified patterns and clusters among
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FIGURE 1. Grid notation for Wolfram rules

the 104 rules, which led to conjectured lemmas, and eventually to proofs that our conjectures
were correct. The computer calculations thus provided crucial data that both prompted ideas and
tempered our search for intermediate results.

3. WOLFRAM RULE NOTATIONS

Patterns among the 104 numbers listed in Theorem2.2 are difficult to discern because the
conversion from binary to decimal obscures many structural details. In this section we intro-
duce other ways to describe the Wolfram rules that makes their similarities and differences more
immediately apparent.

Definition 3.1 (Grid notation). For each binary numberk = a7a6a5a4a3a2a1a0 we arrange its
digits in a grid. The8 local state configurations can be viewed as the vertices of a3-cube and
we arrange them according to the conventional projection of a3-cube into the plane. See the
left-hand side of Figure1. Next, we can place the binary digits ofk at these positions as shown
in the center of Figure1. The boxes have been added because the local state configurations come
in pairs. When a local function is applied, the states of the neighbors ofi are left unchanged,
so that the resulting local state configuration is located in the same box. We call this thegrid
notationfor k. The grid notation for Wolfram rule 29 = 00011101 is shown on the left-hand side
of Figure2.

Because grid notation is sometimes cumbersome to work with we also define a very concise4
symbol tag for each Wolfram rule that respects the box structure of the grid.

Definition 3.2 (Tags). When we look at the grid notation for a Wolfram rule, in each box we see
a pair of numbers,11, 00, 10, or 01, and we encode these configurations by the symbols1, 0, - ,
andx , respectively. In other words ‘1’ = 1 1 , ‘0’ = 0 0 , ‘- ’ = 1 0 , and ‘x ’ = 0 1 .
The symbols are meant to indicate that when the states of the neighbors place us in this box, the
local function updates theith coordinate by converting it to a1, converting it to a0, leaving it
unchanged, or always changing it. We label the symbols for the four boxesp1, p2, p3 andp4 as
shown on the right-hand side of Figure1 and we define thetag of k to be the stringp4p3p2p1.
The numbering and the order of thepi’s has been chosen to match the binary representation as
closely as possible, with the hope of easing conversions between binary and tag representations.
The process of converting Wolfram rule29 to its tag0x-1 is illustrated in Figure2.

Definition 3.3 (Symmetric and asymmetric). The middle row of the grid contains the positions
where the states of the neighbors are equal and the top and bottom rows contain the positions
where the states of the neighbors are different. We call the middle row thesymmetricportion of
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FIGURE 2. Converting Wolfram rule 29 = 00011101 into its tag0x-1 .

the grid and the top and bottom rows theasymmetricportion. In the tag representation, the begin-
ning and end of a tag describes how the rule responds to a symmetric neighborhood configuration
and the middle of a tag describes how it responds to an asymmetric neighborhood configuration.
With this in mind we callp4p1 thesymmetric partof the tagk = p4p3p2p1 and we callp3p2 its
asymmetric part.

Table1 shows the104 ω-independent Wolfram rules listed in Theorem2.2arranged according
to the symmetric and asymmetric parts of their tags. The rows list all 16 possibilities for the
symmetric part of the tag while the columns list only 10 of the 16 possibilities for the asymmetric
part since only these 10 occur among the 104 rules. In addition, each row and column label has
a decimal equivalent, listed next to the row and column headings, that add up tok. In this format
the benefits of the tag representation should be clear. Far from being distributed haphazardly, the
ω-independent rules appear clustered together in large blocks. Table1 reveals a lot of structure,
but some patterns remain slightly hidden due to the order in which the rows and columns are
listed. For example, there is a4-by-4 block of bijective rules obtained by restricting attention to
the four rows that show up in the last column and the four columns that show up in the last row.

Proposition 3.4 (Bijective rules). Wolfram rules 51, 54, 57, 60, 99, 102, 105, 108, 147, 150,
153, 156, 195, 198, 201 and 204 areω-independent.

Proof. The 16 rules listed have tags where eachpi is either- or x . These (and only these)
Wolfram rules correspond to bijective local functions and by Proposition1.9 the ACAs these
rules define areω-independent. �

4. DYNAMICAL EQUIVALENCE

In this section we use the notion of dynamical equivalence to reduce the proof of Theorem2.2
to a more manageable size. Two sequential dynamical systems(Y, FY , ω) and(Y,F′

Y , ω′) defined
over the same graphY are said to bedynamically equivalentif there is a bijectionH : Fn → Fn

between their states such thatH ◦ [FY , ω] = [F′
Y , ω′] ◦ H. The key fact about dynamically

equivalentSDSs, which is also easy to show, is thatH establishes a bijection between their
periodic states. In particular,H(Per[FY , ω]) = Per[F′

Y , ω′]. Thus, if F′
Y is anω-independent

SDS and for eachω ∈ WY there exists anω′ ∈ WY such that(Y, FY , ω) and(Y,F′
Y , ω′) are

dynamically equivalent usingthe same functionH, thenFY is alsoω-independent.
Although there are256 Wolfram rules, many give rise to dynamically equivalentACAs. In

particular, there are three relatively elementary ways to alter anACA to produce another one
that appears different on the surface, but which is easily seen to be dynamically equivalent to the



8 M. MACAULEY J. MCCAMMOND H.S. MORTVEIT

p3 - - 0 0 - 1 1 - x x
p2 - 0 - 0 1 - 1 x - x

p4p1 72 64 8 0 74 88 90 66 24 18

-- 132 204 196 140 132 206 220 222 198 156 150
0- 4 76 68 12 4 78 92 94 70 28
-0 128 200 192 136 128 202 216 218 194 152
1- 164 236 228 172 164 238 252 254 230 188
-1 133 205 197 141 133 207 221 223 199 157
10 160 232 224 168 160 234 248 250 226 184
01 5 77 69 13 5 79 93 95 71 29
00 0 72 64 8 0
x0 32 96 40 32
0x 1 73 65 9 1
-x 129 201 193 137 129 195 153 147
x- 36 108 110 124 126 102 60 54
x1 37 109 111 125 127
1x 161 235 249 251
11 165 237 239 253 255
xx 33 105 99 57 51

TABLE 1. The104 ω-independent Wolfram rules arranged by the symmetric and
asymmetric parts of their tags.

original. These are obtained by (1) renumbering the vertices in the opposite direction, (2) sys-
tematically switching all1s to0s and0s to1s, or (3) doing both at once. We call these alterations
reflection, inversionandreflection-inversionof theACA, respectively. The term reflection high-
lights the fact that this alteration makes it appear as though we picked up the circular graph and
flipped it over. We begin by describing the effect renumbering has on individual local functions.

Definition 4.1 (Renumbering). The renumbering of the vertices we have in mind is achieved
by the mapr : Circn → Circn that sends vertexi to vertexn + 1 − i. For later use we extend
this to a mapr : Wn → Wn on update orders by applyingr to each entry in the sequence.
More specifically, ifω = (ω1, ω2, . . . , ωm), thenr(ω) = (r(ω1), r(ω2), . . . , r(ωm)). Finally,
on the level of states we define a mapR : Fn → Fn that sends sendsy = (y1, y2, . . . , yn) to
(yn, . . . , y2, y1), and we note thatR is an involution.

Definition 4.2 (Reflected rules). If the vertices ofCircn are renumbered, ruleWolf
(k)
i is applied,

and then the renumbering is reversed, the net effect is the same as if a different Wolfram rule
were applied to the vertexr(i). Let ` be the number that represents this other Wolfram rule. The
differences betweenk and` are best seen in grid notation. The renumbering not only changes
the vertex at which the rule seems to be applied, but it also reverses the order in which the3
coordinates are listed in the restricted local form. Only the asymmetric local state configurations,
i.e. the top and bottom rows of the grid, are altered by this change so that the grid for` looks like
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a reflection of the grid fork across a horizontal line. We call` the reflectionof k and we define
a maprefl : {0, . . . , 255} → {0, . . . , 255} with refl(k) = `. On the level of tags, the only change
is to switch order ofp2 andp3, so, for examplè=01-x is the reflection ofk=0-1x .

In short, wheǹ = refl(k), R ◦ Wolf
(k)
i ◦ R = Wolf

(`)
r(i) and, sinceR is an involution, this can

be rewritten asR ◦Wolf
(k)
i = Wolf

(`)
r(i) ◦R.

Proposition 4.3. If ` = refl(k), thenWolf(k)
n is ω-independent iffWolf(`)n is ω-independent.

Proof. The value of̀ was defined so thatR◦Wolf
(k)
i = Wolf

(`)
r(i)◦R. As a result, for anyω ∈ Wn,

theACA (Circn, Wolf(k)
n , ω) is dynamically equivalent to theACA (Circn, Wolf(`)n , r(ω)) since

R ◦ [Wolf(k)
n , ω] = R ◦Wolf(k)

ωm
◦ · · · ◦Wolf(k)

ω2
◦Wolf(k)

ω1

= Wolf
(`)
r(ωm) ◦ · · · ◦Wolf

(`)
r(ω2) ◦Wolf

(`)
r(ω1) ◦R

= [Wolf(`)n , r(ω)] ◦R.

The argument at the beginning of the section now shows that theω-independence ofWolf(`)n

implies that ofWolf(k)
n , but sincè = refl(k) impliesk = refl(`), the converse also holds. �

Similar results hold for inversions as we now show.

Definition 4.4 (Inverting). Let 1 and0 denote the special states(1, 1, . . . , 1) and(0, 0, . . . , 0) in
Fn. Since the functioni(a) = 1− a changes1 to 0 and0 to 1, the mapI : Fn → Fn sendingy to
1− y, has this effect on each coordinate ofy. The mapI is an involution likeR, and from their
definitions it is easy to check that they commute with each other.

Definition 4.5 (Inverted rules). If the states ofCircn are inverted, ruleWolf
(k)
i is applied, and then

the inversion is reversed, the net effect is the same as if a different Wolfram rule were applied at
vertexi. Let ` be the number that represents this other Wolfram rule. The differences between
k and` are again best seen in grid notation. The pre-inversion of states effects the local state
configurations as though the grid had been rotated180◦. The second inversion merely changes
every entry so that1s becomes0s and0s become1s. Thus the grid for̀ can be obtained from
the grid fork by rotating the grid and altering every entry. We call` theinversionof k and define
a mapinv : {0, . . . , 255} → {0, . . . , 255} with inv(k) = `. On the level of tags, there are two
changes that take place. Boxesp1 andp4 switch places as do boxesp2 andp3, but in process the
boxes are turned over and the numbers changed. If we look at what this does to the entries in
a box,11 becomes00, 00 becomes11, while 10 and01 are left unchanged. To formalize this,
define a conjugation mapc : {1, 0,−, x} → {1, 0,−, x} with c(1) = 0, c(0) = 1, c(−) = −, and
c(x) = x. Whenk has tagp4p3p2p1, ` has tagc(p1)c(p2)c(p3)c(p4), so, for example,̀ = x0-1 is
the inversion ofk = 0-1x .

In short, wheǹ = inv(k), I ◦ Wolf
(k)
i ◦ I = Wolf

(`)
i and, sinceI is an involution, this can be

rewritten asI ◦Wolf
(k)
i = Wolf

(`)
i ◦ I.

Proposition 4.6. If ` = inv(k), thenWolf(k)
n is ω-independent iffWolf(`)n is ω-independent.
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p3 0 0
p2 0 -

p4p1 0 8

-- 132 132 140
0- 4 4 12
-0 128 128 136
00 0 0 8
-1 133 133 141
01 5 5 13
-x 129 129 137
0x 1 1 9
1- 164 164 172
10 160 160 168
x0 32 32 40

p3 - x x
p2 - - x

p4p1 72 24 18

-- 132 204 156 150
x- 36 108 60 54
xx 33 105 57 51
-0 128 200 152
10 160 232 184
0- 4 76 28
01 5 77 29
00 0 72
0x 1 73

FIGURE 3. The41 ω-independent Wolfram rules up to equivalence, separated
into two tables by their behavior in asymmetric contexts.

Proof. The value of̀ was defined so thatI ◦Wolf
(k)
i = Wolf

(`)
i ◦ I. As in the proof of Proposi-

tion 4.3this implies that for anyω ∈ Wn, theACA (Circn, Wolf(k)
n , ω) is dynamically equivalent

to theACA (Circn, Wolf(`)n , ω). The argument at the beginning of the section and the fact that
` = inv(k) impliesk = inv(`), complete the proof as before. �

As an immediate corollary of Propositions4.3and4.6, when` = refl(inv(k)) = inv(refl(k)),
Wolf(k)

n is ω-independent iffWolf(`)n is ω-independent. If we partition the256 Wolfram rules
into equivalence classes of rules related by reflection, inversion or both, then there are88 distinct
equivalence classes and the104 rules listed in Theorem2.2are the union of41 of them.

Figure3 displays representatives of these41 classes in pared down versions of Table1. We
used reflection and inversion to eliminate5 of the10 columns. Every rule with a1 in the asym-
metric portion of its tag is the inversion of a rule with a0 instead. In particular, the entries in
the3 columns headed-1 , 1- and11 are inversions of the entries in the columns headed0- , -0
and00 , respectively. Next, since reflections switchp2 andp3 we can also eliminate the columns
headed-0 , -x as redundant. This leaves the5 columns headed00 , 0- , -- , x- andxx . Since
the last3 do not contain0s or 1s, further inversions, or inversion-reflections can be used to
identify redundant rows in these columns.

As mentioned above, the41 rules listed in Figure3 are representatives of the41 distinct equiv-
alence classes of rules whoseω-independence needs to be established in order to prove Theo-
rem2.2. The rows in each table have been arranged to correspond as closely as possible with the
structure of the proof. For example, the first three rows of the table on the right-hand side are the
9 equivalence classes shown to beω-independent by Proposition1.9.
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* 0

* 0 * 0

* 0

* 0

1 1 * 0

* 0

* 0

* 0 1 1

* 0

* 0

* 0 0 1

* 0

FIGURE 4. Four major classes ofω-independent Wolfram rules.

5. MAJOR CLASSES

In this section we prove that four large sets of Wolfram rules areω-independent. All of the
proofs are similar and, when combined with Proposition1.9, leave only6 equivalence classes
of Wolfram rules that need to be discussed separately. The main tool we use is the notion of a
potential function.

Definition 5.1 (Potential functions). Let F : X → X be a map whose dynamics we wish to
understand. Apotential function forF is any mapρ : X → R such thatρ(F (x)) ≤ ρ(x) for all
x ∈ X. A potential function narrows our search for periodic points since any elementx with
ρ(F (x)) < ρ(x) cannot be periodic: further applications ofF can never returnx to its original
potential, hence the name. The only elements inX that are possibly periodic underF are those
whose potential underρ never drops at all. If we call the inverse image of a number inR a level
set ofρ, then to find all periodic points ofF , we only need to examine its behavior on each of
these level sets. Finally, it should be clear that when non-decreasing functions are used in the
definition instead of non-increasing ones, the effect is the same.

Definition 5.2 (SDS potential functions). A potential function for anSDS such as(Y,FY , ω)
is a mapρ : Fn → R that is a potential function, in the sense defined above, for theSDS map
[FY , ω]. The easiest way to create such a function is to find one that is a potential function for
every local functionFi in FY . Of course,ρ should be either a non-decreasing potential function
for eachFi or a non-increasing potential function for eachFi, rather than a mixture of the two,
for the inequalities to work out. Whenρ has this stronger property we call it apotential function
for FY since such aρ is a potential function for(Y,FY , ω) for every choice of update orderω.

Proposition 5.3. Rules 0, 4, 8, 12, 72, 76, 128, 132, 136, 140 and 200 areω-independent.

Proof. If k is one of the numbers listed above, then its grid notation matches the leftmost form
shown in Figure4. (Each∗ is to be interpreted as either a0 or a 1 so that 16 rules share this
form, the 11 listed in the statement and 5 that are equivalent to the listed rules or to previously
known cases.) The4 specified values mean that local functions never remove0s. Thus, the mapρ
sendingy ∈ Fn to the number of0s it contains is a non-decreasing potential function forWolf(k)

n .
Moreover, the local functionsWolf

(k)
i cannot changey without raisingρ(y), so all periodic states

are fixed states (for any update order), and by Proposition1.8Wolf(k)
n is ω-independent. �

For the next potential function, additional definitions are needed.

Definition 5.4 (Blocks). A statey ∈ Fn is thought of as a cyclic binaryn-bit string with the
indices taken modn, and asubstringof y corresponds to a set of consecutive indices. We refer
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to maximal substrings of all0s as0-blocksand maximal substrings of all1s as1-blocks. If
a block contains only a single number it isisolatedand if it contains more than one number
it is non-isolated. The statey = 010110, for example contains one isolated0-block and one
non-isolated0-block of length2 that wraps across the end of the word.

We study how these blocks evolve as the local functions are applied. The decomposition of a
Wolfram rule into its symmetric and asymmetric parts is particularly well adapted to the study
of these evolutions. The asymmetric rules either make no change or shrink a non-isolated1-
block or0-block from the left or the right, depending on which of the4 asymmetric rules we are
considering. Similarly, the4 symmetric rules either do nothing, they remove an isolated block or
they create an isolated block in the interior of a long block.

Proposition 5.5. Rules 160, 164, 168, 172 and 232 areω-independent.

Proof. If k is one of the numbers listed above, then its grid notation matches the second form
shown in Figure4. The specified values mean that (1) the only0s ever removed are the isolated
0s and (2) isolated0s are never added. In particular, non-isolated blocks of0s persist indefinitely,
they might grow but they never shrink or split, and the isolated0s, once removed, never return.
Thus, the mapρ that sendsy to the number of non-isolated0s iny minus the number of isolated
0s iny is a non-decreasing potential function forWolf(k)

n . As before, the local functionsWolf
(k)
i

cannot changey without raisingρ(y), so all periodic states are fixed states (for any update order),
and by Proposition1.8Wolf(k)

n is ω-independent. �

Proposition 5.6. Rules 5, 13, 77, 133 and 141 areω-independent.

Proof. If k is one of the numbers listed above, then its grid notation matches the third form
shown in Figure4. This time the specified values mean that (1) the only0s that are removed
create isolated1s, and (2) isolated1s are never removed and they never stop being isolated. Thus
the mapρ that sendsy to the number of0s in y plus twice the number of isolated1s in y is a
non-decreasing potential function forWolf(k)

n . Once again, the local functionsWolf
(k)
i cannot

changey without raisingρ(y), so all periodic states are fixed states (for any update order), and
by Proposition1.8Wolf(k)

n is ω-independent. �

The argument for the fourth collection is slightly more complicated.

Proposition 5.7. Rules 1, 9, 73, 129 and 137 areω-independent.

Proof. If k is one of the numbers listed above, then its grid notation matches the rightmost form
shown in Figure4. This time the specified values mean that (1) the only0s that are removed
create isolated1s, but (2) isolated1s can also be removed. The mapρ that sendsy to the number
of 0s iny plus the number of isolated1s iny is a non-decreasing potential function forWolf(k)

n ,
but the difficulty is that there are local changes withρ(Wolf

(k)
i (y) = ρ(y). This is true for the

local change000 → 010 and for the local change010 → 000. All other local changes raise
the potential, but the existence of these two equalities indicates that there might be (and there
are) states that are periodic under the action of someSDS map[Wolf(k)

n , ω] without being fixed.
Rather than appeal to a general theorem, we calculate its periodic states explicitly in this case.
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Fix an update orderω ∈ Wn and, for convenience, letF : Fn → Fn denote theSDS map
[Wolf(k)

n , ω] : Fn → Fn. If a3 = 0 andy contains a substring of the form011, thenρ(F (y)) >
ρ(y) andy is not periodic underF . This is because either (1) the substring remains unaltered
until its central coordinate is updated, at which point it changes to0 andρ is raised, or (2) it is
altered ahead of time by switching the1 on the right to a0 (also raisingρ), or by switching the0
on the left to a1 (impossible sincea1 = a5 = 0). Analogous arguments show that ifa6 = 0 and
y contains the substring110, or if a7 = 0 andy contains the substring111, theny is not periodic
underF . Let P be the subset ofFn where these situations do not occur. More specifically, if
a3 = 0 remove the states with011 substrings, ifa6 = 0 remove the states with110 substrings,
and ifa7 = 0 remove the states with111 substrings. If all three are equal to1, thenP = Fn.

We claim thatP = Per[Wolf(k)
n , ω], independent of the choice ofω. We have already shown

P ⊂ Per[Wolf(k)
n , ω]. Note thatP is invariant underF (in the sense thatF (P ) ⊂ P ) since the

allowed local changes are not able to create the forbidden substrings when they do not already
exist. Moreover,F restricted toP agrees with rule 201 =---x , the rule of this form with
a3 = a6 = a7 = 1, since whenevera3, a6 or a7 is 0, P has been suitably restricted to make this
fact irrelevant. Finally, for everyω rule 201 is bijective, thusF is injective onP , F permutes the
states inP and a sufficiently high power ofF is the identity, showing every state inP is periodic
independent of our choice ofω. �

6. EXCEPTIONAL CASES

At this point there are only6 remaining rules whoseω-independence needs to be established
and they come in pairs: 28 and 29, 32 and 40, and 152 and 184. These final6 rules exhibit
more intricate dynamics and the proofs are, of necessity, more delicate. We treat them in order
of difficulty.

Proposition 6.1. Rules 32 and 40 areω-independent.

Proof. Let k be 32 or 40, letπ = (π1, π2, . . . , πn) ∈ Sn be a simple update order, and let
F : Fn → Fn denote theSDS map[Wolf(k)

n , π] : Fn → Fn. The listed rules share the leftmost
form shown in Figure5 and it is easy to see that0 is the only fixed state (1 is not fixed and
a2 = a6 = 0 means the rightmost1 in any1-block converts to0 when updated). We also claim0
is the only periodic state ofF . Once this is established, theω-independence ofWolf(k)

n follows
immediately from Proposition1.8.

The valuesa0 = a1 = a4 = 0 mean non-isolated0-blocks persist indefinitely, they do not
shrink or split. Moreover,a2 = a6 = 0 means that each non-isolated0-block adds at least one0
on its left-hand side with each application ofF . In particular, any statey 6= 0 with a non-isolated
0-block eventually becomes the fixed point0. Thus no suchy is periodic.

The rest of the argument is by contradiction. Suppose thaty is a periodic point ofF other than
0 and consider theith coordinates iny, F (y) andF (F (y)). We claim that at least one of these
coordinates is0 and at least one of these is1. This is because at least4 out of the5 local state
configurations that do not involve non-isolated0s change the coordinate (and whenk = 32 all 5
of them make a change). The only way thatyi does not change value inF (y) is if immediately
prior to the application ofWolf

(k)
i , the local state configuration is011. Between this application
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0 0

0 1 0 0

* 0

0 1

1 * 0 0

1 0

0 1

0 0 1 *

1 0

FIGURE 5. Three final pairs ofω-independent Wolfram rules.

of Wolf
(k)
i and the next, the0 to the left is updated. It either is no longer isolated at this point

(contradicting the periodicity ofy) or it now becomes a1. In the latter case, the application of
Wolf

(k)
i during the second iteration ofF changes theith coordinate from1 to 0. Note that we

used the simplicity of the update order to ensure that each coordinate is updated only once during
each pass throughF . Finally, suppose thati = π1 and choosey, F (y) orF (F (y)) so the(i+1)st

coordinate is a0. As soon asWolf(k)
π1

is applied, there is a non-isolated0-block, contradicting the
claim thaty 6= 0 is a periodic point. �

Since it was easy to show that every state is periodic under the bijective Wolfram rule 156 (with
tag -x-- ), we did not examine the evolution of its blocks. We do so now since its behavior is
relevant to our study of the4 remaining rules.

Example 6.2 (Wolfram rule 156). Because the symmetric part of rule 156 is-- no isolated
blocks are ever created or destroyed and thus the number of blocks is invariant under iteration.
Moreover, the four valuesa1 = a5 = 0 anda2 = a3 = 1 mean that substrings of the form01
are fixed indefinitely, leaving the right end of every0-block and the left end of every1-block
permanently unchanged. The other type of boundary can and does move sincep3 = x , and it is
its behavior that we want to examine. Letπ ∈ Sn be a simple update order and letF : Fn → Fn

denote theSDS map [Wolf(156)
n , π] : Fn → Fn. So long asy is not0 or 1, there is a1-block

followed by a0-block and a corresponding substring of the form01 · · · 10 · · · 01. (If y only
contains one0-block and one1-block, then the first two digits are the same as the last two digits,
but that is irrelevant here.) As remarked above, the beginning of the1-block and the end of the
0-block are fixed, but the boundary between them can vary.

Suppose both blocks are non-isolated and consider the central substring10 at positionsi and
i + 1. These are the only positions in the entire substring that can vary and the first one to
be updatedwill change value. Assume the0 is updated first. The1-block grows, the0-block
shrinks and the boundary shifts one step to the right. As we cycle through the local functions, the
simplicity of π guarantees that the(i + 2)nd coordinate is updated before the(i + 1)st coordinate
is updated a second time. Thus the boundary shifts one more step to the right. This argument
continues to be applicable until the0-block shrinks to an isolated0. At this point, the0 is still
updated before the1 to its left is updated again, but this time the0 remains unchanged. When
the1 to its left is updated it changes back to a0, the1-block shrinks, the0-block grows and the
boundary shifts to the left. The same argument with left and right reversed shows that now the
0-block continues to grow until the1-block shrinks to an isolated1, at which point the shifting
stops and the boundary starts shifting back in the other direction.

Proposition 6.3. Rules 152 and 184 areω-independent.
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Proof. Let k be 152 or 184, letπ = (π1, π2, . . . , πn) ∈ Sn be a simple update order, and let
F : Fn → Fn denote theSDS map[Wolf(k)

n , π] : Fn → Fn. The listed rules share the second form
shown in Figure5 and it is easy to see that0 and1 are the only fixed states (sincea2 = a6 = 0
means the rightmost1 in any1-block converts to0 when updated). We also claim0 and1 are
the only periodic states ofF . Once this is established, theω-independence ofWolf(k)

n follows
immediately from Proposition1.8.

Since isolated blocks are never created, the mapρ that sendsy to the number of blocks it
contains is a non-increasing potential function forWolf(k)

n . Moreover, since the only differences
between rule 156 and rules 152 and 184 are that rule 152 removes isolated1-blocks and rule 184
removes both isolated1-blocks and isolated0-blocks, the mapF agrees with[Wolf(156)

n , π] so
long as it is not called upon to update an isolated1-block (or an isolated0-block whenk = 184).
The long-term behavior of rule 156, however, as described in Example6.2, shows that under
iteration everyy not equal to0 or 1 eventually updates such an isolated block, removing it and
decreasingρ, thus showing that such ay is not periodic. �

Finally, the argument for Wolfram rules 28 and 29 is a combination of the difficulties found in
the proofs of Propositions5.7and6.3.

Proposition 6.4. Rules 28 and 29 areω-independent.

Proof. Let k be 28 or 29, letπ = (π1, π2, . . . , πn) ∈ Sn be a simple update order, and let
F : Fn → Fn denote theSDS map[Wolf(k)

n , π] : Fn → Fn. The listed rules share the rightmost
form shown in Figure5 and the valuesa5 = 0 anda2 = 1 mean that isolated blocks are never
removed. Thus the mapρ that sendsy to the number of blocks it contains is a non-decreasing
potential function forWolf(k)

n . The four valuesa1 = a5 = 0 anda2 = a3 = 1 mean that
substrings of the form01 persist indefinitely, as in Wolfram rule 156. In fact, so long asρ is
unchanged, the behavior ofF under iteration is indistinguishable from iterations of the map
[Wolf(156)

n , π]. Consider a substring of the form01 · · · 10 · · · 01 and suppose that the length of
the1-block on the left plus the length of the0-block on the right is at least4. We claim that any
y containing such a substring is not periodic underF . If it were, the evolution of this substring
would oscillate as described in Example6.2 and at the point where the0-block shrinks to an
isolated0, the1-block on the left contains the substring111. Moreover, between the point when
that penultimate0 becomes a1 and the point when it is to switch back, the substring111 is
updated, increasingρ. Whenk is 29, a similar increase inρ can occur when the1-block shrinks
to an isolated1 and the0-block contains the substring000. In neither case can a state containing
a1-block followed by a0-block with combined length at least 4 be periodic underF .

Next, note that whenk = 29 both of the special states0 and1 are not fixed, but that fork =
28 1 is not fixed, while0 is fixed. LetP be the set of states containing both0s and1s that do
not contain a1-block followed by a0-block with combined length at least 4, and, whenk = 28,
include the special state0 as well. Because we understand the way that such statesy ∈ P evolve
under Wolfram rule 156 (Example6.2), we know that at no point in the future does a descendent
of y ever contain a substring of the form111 or 000. ThusP has been restricted enough to make
the values ofa7 anda0 irrelevant, andF sendsP into itself. Moreover, sinceF agrees with
[Wolf(156)

n , π] onP , and this map is injective,F is injective onP , F permutes the states inP and
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Number of flips 0 1 2 3 4 5 6 7 8
Number ofω-independent rules 1 8 26 34 26 4 4 0 1

Number of rules 1 8 28 56 70 56 28 8 1
Percentage 100% 100% 93% 61% 37% 7% 14% 0% 100%

TABLE 2. The number of flips and the probability ofω-independence.

a sufficiently high power ofF is the identity, showing every state inP is periodic, independent
of our choice ofπ. Now that we know thatWolf(k)

n is π-independent,ω-independent follows
from Theorem1.7. �

7. CONCLUDING REMARKS

Now that the proof of Theorem2.2is complete, we pause to make a few comments about it and
the 104ω-independent Wolfram rules it identifies. For each of the8 local state configurations,
Wolfram rulek either leaves the central coordinate unchanged or it “flips” its value. The number
of local state configurations that are flipped in this way is strongly correlated with the probability
that a given rule isω-independent. See Table2. The numbers in the third row are the binomial
coefficients

(
8
i

)
, since they clearly count the number of Wolfram rules with exactlyi flips. The

key facts illustrated by Table2 are that virtually all of the rules with at most2 flips areω-
independent, the percentage drops off rapidly between2 and6 flips, andω-independence is very
rare among rules with6 or more flips. In fact, all5 such rules areω-independent because they are
bijective. It would interesting to know whether this observation can be quantitatively (or even
qualitatively) extended to a rigorous assertion about more generalSDSs.

Next, there are two aspects of Theorem2.2that we found slightly surprising. First, we did not
initially expect the set of rules that wereω-independent for small values ofn to match exactly
the set of rules that wereω-independent for all values ofn > 3. The second surprise was that the
during the course of the proof we found that the Wolfram rules truly are local rules, in the sense
that their set of periodic points tended to have essentially local characterizations.

Finally, although the focus of this article was solely the classification of the 104ω-independent
Wolfram rules, and not the dynamics of these rules per se, many interesting dynamical properties
arose in the course of the proof. We are currently studying the dynamics and periodic sets for all
256 Wolfram rules in greater detail, as well as examining how the sets of periodic states under
anω-independent Wolfram rule get permuted as the update order is altered. The latter situation
involves an object called thedynamics groupof anω-independentSDSs. We plan on publishing
these further results in a future article that builds on the results described here.
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