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Overview

The plan is to spend
• two days on (topics related to) Coxeter groups, and
• two days on (topics related to) Artin groups.

The theme will be the close connections these groups have with
other parts of mathematics (and the need to understand these
connections in order to fully understand the groups).

For Coxeter groups, the list includes regular polytopes, Lie
groups, symmetric spaces, and finite simple groups. All of these
connections are well-known (but not to everyone).

For Artin groups, the associated objects are less well understood
(and they include some interesting infinite continuous groups).
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Where do Coxeter groups come from?

Although Coxeter groups (and Artin groups) can be easily defined

via presentations, this fails to show why they are important.

The motivation for the definition comes from two directions:

Platonic solids ⇒ Regular polytopes ⇒ Finite reflection groups

Lie groups ⇒ Lie algebras ⇒ Affine reflection groups

Both finite and affine reflection groups have simple presentations

and Coxeter groups can be viewed as their natural generalization.
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Polytopes

Def: A polytope P is the convex hull of a finite set of points

in some Euclidean space, or, equivalently, it is a bounded, non-

empty intersection of finite number of half-spaces.

The dimension of the minimal affine subspace containing P is

called the dimension of P .

If H is a half-space containing P and Q = ∂H ∩ P is non-empty,

then Q is another polytope called a face of P . The faces of P

are ordered by inclusion.

A face Q of d-dimensional polytope P is called a vertex, edge,

or facet if the dimension of Q is 0,1, or d− 1, respectively.
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Regular Polytopes: Low Dimensions

The class of regular polytopes should include regular polygons:

· · ·

and the platonic solids:
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Barycenters

Thm: If A is a bounded subset of Rn then there is a unique
closed ball containing A of smallest possible radius.

PSfrag replacements

rr

< r

A

x yz

Cor: Every bounded subset of Rn has a unique center.

The barycenters of the faces can be used to subdivide a polytope.
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Barycentric Subdivisions

A subdivided cube with one of its 48 tetrahedra shaded.

The vertices are color-coded to indicate the dimension of the
face whose center is being marked: 0=•, 1=•, 2=•, and 3=•.
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Regular Polytopes: Definition

Def: A polytope is regular if its isometry group acts transitively
on the maximal simplices in its barycentric subdivision.

Ex: A cube is regular.
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Dual Regular Polytopes

Prop: If P is a regular polytope and Q is the convex hull of

the barycenters of the facets of P , then Q is another regular

polytope called the dual of P .

Rem: The dual of the dual is a rescaled version of the original.

Ex: The cube and octahedron are dual. The icosahedron and

dodecahedron are dual. The tetrahedron is self-dual.
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Regular Polytopes: High Dimensions

In every dimension there are regular polytopes that are analogs

of the tetrahedron, octahedron and cube.

The n-dimensional simplex is the convex hull of an orthonormal

basis in Rn+1, i.e. 4n :=Conv({ei}).

The n-dimensional orthoplex is the convex hull of an orthonor-

mal basis and its negative in Rn, i.e. ♦n :=Conv({±ei}).

The n-dimensional cube is the subspace �n := [−1,1]n ⊂ Rn.

�n and ♦n are dual; 4n is self dual.
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Regular 4-Polytopes: 3 More Examples

Ex: The Poincaré homology 3-sphere has a piecewise spherical

geometric structure. The preimage of a point in its universal

cover is a collection of 120 symmetrically placed points in S3.

The convex hull of these points in R4 is a regular 4-polytope

with 120 vertices and 600 tetrahedral facets called the 600-

cell. Its dual is a regular 4-polytope with 600 vertices and 120

dodecahedral facets called the 120-cell.

Ex: There are exactly 24 lattice points in Z4 ⊂ R4 that are

distance 2 from the origin: 8 with shape (±2,03) and 16 with

shape (±14). The convex hull of these 24 points is a regular

4-polytope with 24 vertices and 24 octahedral facets called the

24-cell. It is self-dual.
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The Classification Theorem

Perhaps surprisingly, these examples form a complete list.

Theorem: Every regular polytope is

1. a closed interval,

2. a regular m-gon with m ≥ 3,

3. one of the 5 platonic solids,

4. one of the 6 regular 4-polytopes, or

5. an n-dimensional simplex, orthoplex or cube with n > 4.
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Basic Reflections

Rem: Maximal simplices have one vertex of each color, and

isometries must preserve the colors. As a consequence, the

reflection through an interior facet of a maximal simplex in a

regular polytope must be an isometry.

Prop: If P is a regular polytope then any set of basic reflections

generates the isometry group.

Def: Let v0, . . . , vd be the vertices of a fixed maximal simplex;

Let ri be the reflection through the facet opposite vi (i < d);

And let ~ni be the vector from vi to ri(vi).
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Basic Reflections in the Cube
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Commuting Reflections

Rem: If there is a k with i < k < j then ~ni and ~nj are perpen-

dicular and ri and rj commute.

Proof: ~ni is parallel to the k-cell vk represents and ~nj is perpen-

dicular to it.
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Non-Commuting Reflections

Rem: If i + 1 = j, then the angle between ~ni and ~nj is π − π/n

for some n ≥ 3. In particular, ri and rj do not commute.

Proof: Look at maximal simplices surrounding the co-dimension

2 face that excludes vi and vj.
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Schläfli Symbols

Cor: The vector arrangement {~ni} can be summarized with a

list of numbers called its Schläfli symbol.

Ex: The cube is described by the list {4,3} since ~n0 and ~n1 form

a 3π/4 angle and ~n1 and ~n2 form a 2π/3 angle.
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Common name Schläfli symbol Cartan-Killing type
n-simplex {3n−1} An

n-orthoplex {3n−2,4} Bn

n-cube {4,3n−2} Bn

4-simplex {3,3,3} A4
4-orthoplex {3,3,4} B4

4-cube {4,3,3} B4
24-cell {3,4,3} F4
600-cell {3,3,5} H4
120-cell {5,3,3} H4

tetrahedron {3,3} A3
octohedron {3,4} B3

cube {4,3} B3
icosahedron {3,5} H3

dodecahedron {5,3} H3
m-gon {m} I2(m)
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Dynkin Diagrams

Dynkin Diagrams contain the same information as Schläfli’s lists,

but in a graphical form.

Draw a row of dots that represent the basic reflections r0, r1, etc.

Connect the adjacent dots and label them by Schläfli numbers,

omitting all the 3s.

Ex: For example, the 120-cell has Schläfli symbol {5,3,3} and

Dynkin diagram:

1 2 3 4

5
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Vector Arrangements and Positive Definite Matrices

Thm: If {~ni}i∈[n], is a set of linearly independent vectors in
Rn, then the real symmetric matrix M = [~ni · ~nj](i,j) is positive
definite. Conversely, if M is a real symmetric positive definite
matrix, then there is an ordered n-tuple of linearly independent
vectors in Rn (unique up to isometry) whose dot products are
described by M .

It is easy to determines whether a matrix is positive definite.

Prop: An n× n matrix is positive definite if and only if each of
its principal minors has a positive determinant.

Cor: Dynkin diagrams of regular polytopes cannot contain Dynkin
diagrams of non-examples.
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Examples and Non-examples

Positive Definite Not Positive Definite

An
....

1 2 3 n

Bn
....

1 2 3

4

n

I2(m)
1 2

m

H3 1 2 3

5

H4 1 2 3 4

5

F4 1 2 3 4

4

C̃n
....

1 2 3

≥ 4≥ 4

n

G̃2
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The Proof
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Other Finite Reflection Groups

If we broaden our perspective to study all finite groups generated
by reflections, then there are additional examples.

Dn
....

1

2

3 4 n − 1n − 2 n

E8
1 2 3

4

5 6 7 8

E7
1 2 3

4

5 6 7

E6
1 2 3

4

5 6

The new examples are clearly not from regular polytopes since
their Dynkin diagrams branch. The classification proof is similar.
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Finite Coxeter Groups = Finite Reflections Groups
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Quaternions and Octonions

Many of the finite reflection groups are closely tied to the

quaternions and octonions. [Conway-Smith] [Baez]

• I2(m), H3 and H4 are finite subgroups of the quaternions.

• the Lie group of type G2 is Aut(O).

• the Lie group of type F4 is Isom(OP2).

• the affine reflection groups of type D4 and E8 are closely re-

lated to the ring of integers in the quaternions and octonions,

respectively, and E6 and E7 correspond to important subrings.
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