
Coxeter groups and Artin groups
Day 3: Pulling Apart Orthogonal Groups

? ←↩ Artin ⊃ Braidn
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Lie ←↩ Coxeter ⊃ Symn
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Continuous Braid Groups

Today’s goal is to describe one way to complete this diagram:

? ←↩ Artin ⊃ Braidn

� � �

Lie ←↩ Coxeter ⊃ Symn

The mystery groups would complete the sentence, “Symmetric

groups are to braid groups as Lie groups are to (blank).”

Rem: Lie groups are not even countably generated so neither

are the mystery groups.

Q: Why should we try and construct such a thing?
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Why

Every Coxeter group can be faithfully represented as a reflec-

tion group acting properly discontinuously by isometries on some

symmetric space (finite=positive, infinite=non-positive curved).

It seems to me that this (directly and indirectly) leads to

• Tits’ solution to the word problem

• the Davis Complex with with the Moussong metric

• ...all other nice properties of Coxeter groups.

In short, the good geometry is the ultimate source of the good

computational and algorithmic properties of Coxeter groups.

A similar good geometry might help us understand Artin groups.
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Continuous Groups

Even if G is a continuous group such as the Lie group O(n), we

can still treat G as though it were an infinite discrete group.

• What subsets generate G?

• How can it be presented?

• What cell complexes is it the fundamental group of?

• Can we put metrics on them and use the geometry of its

universal cover to better understand the group?

Sample Question: How should we visualize the free product of

S1 and S1?
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Longitude metric on S2

Consider the 2-sphere with the longitude metric (or the

Paris-New Zealand metric).

• What is its fundamental group?

• What is its universal cover?

The universal cover is related to the complex one would want to

consider for the free product of S1 and S1.

Moreover, this group, with the extra restrictions deserves to be

called FC+
S1.

[Blackboard]
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Cayley Graph of O(2)

Everyone learns that the group of Euclidean motions are gener-

ated by reflections but have you ever wondered what the Cayley

graph for Isom(Rn) looks like with respect to this set?

Consider the Cayley graph of O(2) with respect to the set of

reflections. The result is a spherical join of two circles which

looks like a 3-sphere with a strange metric structure. What is a

presentation for O(2)?

O(2) = 〈rα ∈ RP2 | r2α, rαrα+γ = rβrβ+γ ∀α, β, γ ∈ RP2〉

It’s not quite a continuous Coxeter group. [Blackboard]
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Decision Problems and Computability

Q: Is the word problem decidable for the matrix group GLn(K)?

A: Of course. Regardless of what generating set you consider,

we only need to multiply the matrices and check whether or not

the product is equal to identity matrix.

When K = R there is an issue of whether we can input, export,

add, subtract, multiply and test equality of real numbers, but

notice that this is the ONLY issue.

Thus the word problem is decidable modulo a black box that

handles field operations such as these.
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Computations in Coxeter Groups

In addition to the proof using the decidability of matrices over

the algebraic closure of Z, Tits gave a much simpler solution to

the Word Problem.

Thm: Every element in a Coxeter group W can be shortened to

a geodesic in a non-length increasing way using only rewriting

rules of the form s2 → 1 and (sts · · · )↔ (tst · · · ) where both sides

have length m = m(s, t).

The linear representation is crucial in the early stages of the

proof. In particular, without the linear representation there is

no way to see that there exists a group where the order of st is

really m (when (st)m is a relation) and not some proper divisor.
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Analyzing a Coxeter Group

Steps towards understanding a Coxeter group geometrically:

• Diagram
• Presentation
• Matrix
• Representation
• Type
• Symmetric Space
• Reflecting Hyperplanes
• Cayley Graph
• Davis Complex
• Moussong Metric

[Blackboard]
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Davis Complex with the Moussong Metric

(This isn’t the right picture but it’s the one I have at hand)
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Cayley Graphs

If G is a group, then any connected graph Γ with a free and

vertex-transitive G-action is called a Cayley graph for G. For

Coxeter groups W we typically do not draw the real Cayley graph

on which W acts freely. Rather, we draw a graph that only has

a proper action. Define W+ := Ker(W → Z2).

If FCn denotes the free Coxeter group with n generators, then

the fundamental group of the graph on the left is FC+
3 .
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Free Coxeter Group: Base Complex

The free Coxeter group is a free product of Z2’s so it is the

fundamental domain of a wedge product of RP2’s.

(These are supposed to be three copies of Boys’ surface)
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Boys’ Surface
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Free Coxeter Group: Universal Cover
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Real Braid Arrangement

The (real) braid arrangement is the space of all n-tuples of
distinct real numbers (x1, x2, . . . , xn).

Ex: In R2 this consists of the stuff above the line y = x and
the stuff below the line y = x. In R3 it consists of 6 connected
pieces separated by the planes x = y, x = z and y = z. In Rn it
has n! connected pieces separated by the hyperplanes {xi = xj}.

x

y

z
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Complexified Braid Arrangement

The complexified braid arrangement is the space of all n-
tuples of distinct complex numbers (z1, z2, . . . , zn). There’s a
trick to visualizing this space.

Ex: The figure below encodes the point

(z1, z2, z3, z4) = (1 + 3i,3− 2i,0,−2− i)

Re

Im

z1

z2

z3

z4
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Braids

Paths in the complexified arrangement move the labeled points
in the complex plane without letting them collide.

z1

z1

z2

z2

z3

z3

z4

z4

If we keep track of this movement by tracing out what happens
over time we see actual braided strings—hence the name.
The path shown is a non-trivial closed loop.
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(Pure) Braid Groups

The fundamental group of the complexified braid arrangement
is the pure braid group.

z1

z1

z2

z2

z3

z3

z4

z4

To get the ordinary braid group we quotient by the (free) action
of the symmetric group on the hyperplane complement.
Exer: Do the same thing for type Bn.
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(Pure) Artin Groups

The same idea works for all finite Coxeter groups and can be
extended to all Coxeter groups by analogy. Every resulting pre-
sentations fits the following pattern: for every pair of distinct
generators s, t ∈ S there is at most one relation of the form
(sts · · · ) = (tst · · · ) where both sides have m letters.

Ex: 〈a, b, c | aba = bab, ac = ca〉

The groups with these types of presentations are called Artin
groups (or Artin-Tits groups).

Despite their simple presentations, they are generically quite
mysterious groups. Note that this does NOT extend to the
continuous setting.
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Pulling Apart Groups

Let G be a group, let S be a generating set and let g ∈ G be

represented by a word in S+.

Set M := {w ∈ S+ | [w] = g and |w| is minimal}.

Define Ĝ by the presentation 〈S | u = v, ∀u, v ∈M 〉.

Rem: There are natural maps Ĝ � G and Ĝ � Z
that extend identity:S → S or constant:S → 1.

Rem: Since this is such a general construction, we expect it

to be useless. The surprising thing is how often it gives an

interesting answer.

20



An Easy Example

Let G = Sym3 and set a = (12), b = (23), and c = (13).

Ĝ({a, b}, aba) = 〈a, b | aba = bab〉
Ĝ({a, b, c}, ab) = 〈a, b, c | ab = bc = ca〉

PSfrag replacements

1
a b

c

ab
PSfrag replacements

1
a bc

ab

aba

In both cases, Ĝ = Braid3, the 3-string braid group.
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The Right Set of Generators

Let G, S, g and M be as above.

Def: Call S weakly closed if a, b ∈ S and ab a subword of an

element of M , implies c = aba−1 and d = b−1ab are also in S.

When S is weakly closed we can replace ab with ca or bd and find

another word in M (i.e. we can move letters around).

Ex: A generating set closed under conjugacy is weakly closed,

but smaller sets can also be weakly closed.

Given G, S, and g we can try and find the weak closure of S.

This works so long as the length of g does not go down.
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More Examples

G S g Ĝ
(Z2)

n basis (1,1, . . . ,1) Zn

Symn basic transpositions full flip Braidn

Symn all transpositions n-cycle Braidn

finite Coxeter basic reflections longest elt. finite-type Artin
finite Coxeter all reflections Coxeter elt. finite-type Artin

FCn = ∗Z2 weak closure x1x2 · · ·xn Fn

“Thm:” If W is a Coxeter group generated by its full set of

reflections and we pull W apart at one of its Coxeter elements,

then the resulting group is the corresponding Artin group.

[quotes have been added due to a glitch in the proof]
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Functorality

Prop: Let (G, S, g) and (H, T, h) be groups, generating sets and

elements. If φ : G → H is a group homomorphism such that

φ(S) = T , φ(g) = h and |g|S+ = |h|T+, then there is a homomor-

phism φ̂ : Ĝ→ Ĥ.

Cor: Pulling twice is the same as pulling once.

This is the key idea used in our attempt to show that the pulled

Coxeter group Ŵ is always equal to the corresponding Artin

group A.

Having this equality makes more of the Artin group amenable to

computation since we can compute in W .
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Pulling Apart O(2)

• The set of all factors of a rotation into a pair of reflections

looks like a suspension of a circle.

• The universal cover of the complex for Ô(2) is an S1-branching

tree cross the reals (an R-tree).

• The action on the cross section has cyclic stabilizers.

• There may or may not be central elements depending on

whether or not the original rotation is a rational multiple of π.

25



Returning to O(n)

The group O(n) can also be generated by reflections and the
poset of factors below a maximal length element can be analyzed.
In this case the poset is a lattice and the result is a continuous
Garside structure.

The resulting group is new, rather strange, but well-behaved.
The corresponding complex admits a metric of non-positive cur-
vature, is a K(Ĝ,1) and its universal cover is a topologically an
Ãn−1-building cross the reals. The word problem is decidable
and the elements have computable Garside normal forms.

Moreover, if we choose as our α the image of the Coxeter element
of the symmetric group under the standard embedding, then
this Garside structure contains the dual Garside structure for the
braiid group thereby embedding Braidn into Ĝ.
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