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I. Coxeter groups and Artin groups

Let Γ be a finite graph with edges labeled by

integers greater than 1, and let (a, b)n be the

length n prefix of (ab)n.

Def: The Artin group AΓ is generated by its

vertices with a relation (a, b)n = (b, a)n when-

ever a and b are joined by an edge labeled n.

Def: The Coxeter group WΓ is the Artin group

AΓ modulo the relations a2 = 1 ∀a ∈ Vert(Γ).

Graph
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Artin presentation

〈a, b, c| aba = bab, ac = ca, bcbc = cbcb〉

Coxeter presentation
〈

a, b, c|
aba = bab, ac = ca, bcbc = cbcb

a2 = b2 = c2 = 1

〉
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Natural yet mysterious

Artin groups are “natural” in the sense that

they are closely tied to the complexified ver-

sion of the hyperplane arrangements for finite

reflection groups.

But they are “mysterious” in the sense that it

is unknown if

1. They have a decidable word problem

2. They are torsion-free

3. They have finite (dimensional) K(π,1)s

4. They are linear

5. The positive monoid injects into the group

Actually 5 was recently shown to be true by

Luis Paris, but the proof is still mysterious.
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II. Garside structures

Let G be a group, let A be a generating set,

and let ∆ be an element of G.

This data defines a Garside structure for G

if the edge-labeled poset of directed paths in

the Cayley graph of G with respect to A is a

balanced lattice (lattice in the combinatorial

sense) and includes edges labeled by each of

the elements of A.

Balanced means that the words readable start-

ing at the bottom are the words readable end-

ing at the top.
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A Garside structure for Z3 is shown.
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Examples of Garside structures

Braid groups and other finite-type Artin groups

each have two Garside structures. For the 3-

string braid group the two posets are shown.

The second one is the dual of the first.
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〈a, b|aba = bab〉 = 〈a, b, c|ab = bc = ca〉

6



The dual F4 Poset
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Why “dual”?

S = standard generators

T = set of all “reflections”

c = a Coxeter element

w0 = the lift of the longest element in W

n = the rank (dimension) of W

N = # reflections = # of positive roots

h = Coxeter number = order of c

Classical
monoid

Dual
monoid

Set of atoms S T

Product of atoms c w0
Number of atoms n N

Regular degree h 2

∆ w0 c

Length of ∆ N n

Order of p(∆) 2 h
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What Garside structures are good for

If G is a group with a Garside structure,

then it

1. has a presentation derived from the poset

2. is the group of fractions of this presentation

3. has a decidable word problem

4. has a finite (dimensional) K(π,1)

5. is torsion-free.

Thus finding Garside structures for Artin groups

would be a very good thing. The hardest part

is almost always showing that the poset is a

lattice.
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III. Garside structures for free groups

Let Fn be a free group with basis x1, x2, . . . , xn

and let ∆ = x1x2 · · ·xn. We can start building

a Garside structure by continuing to add paths

(and generators) to create a balanced graded

poset.
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The construction in this case leads to a univer-

sal cover which is an infinitely branching tree

cross the reals with a free F2 action.
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A more topological definition

Let D∗ denote the unit disc with n puntures
and 4 distinguished boundary points, N , S, E

and W .

Def: A cut-curve is an isotopy class (in D∗) of
a path from E to W (rel endpoints, of course).
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Notice that cut-curves divide D∗ into two pieces,
one containing S and the other containing N .
Its height is the number of puncture in the
lower piece.
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Poset of cut-curves

Let [c] and [c′] be cut-curves. We write

[c] < [c′] if there are representatives c and c′

which are disjoint (except at their endpoints)

and c is “below” c′.
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Notice that if representative c is given, then

we can tell whether [c] < [c′] by keeping c fixed

and isotoping c′ into a “minimal position” with

respect to c (i.e. no football shaped regions

with no punctures).
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Proving the lattice property

Lemma The poset of cut-curves is a lattice.
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Proof: Suppose [c] is above [c1] and [c2]. Place

representatives c1 and c2 in minimal position

with respect to each other (i.e. no football re-

gions) and then isotope c so that it is disjoint

from both. This c is above the dotted line.

Thus the dotted line represents a least upper

bound for [c1] and [c2].
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IV. Garside structures for Artin groups

For a general Artin group, we start with a

specific marking of D∗ (in the form of cuts)

and draw arcs connecting the punctures which

avoid the cuts.
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From the graph Γ we define a subgroup H of

the braid group which is generated by powers

of half-twists along the arcs with the powers

determined by the labels on the edges.
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Garside structure for AΓ

From H we can define a poset either alge-

braically (using double cosets inside the braid

group) or topologically using the action on D∗.

Algebraic: Consider the double cosets Bk ×

Bn−kβH where β is a braid in Bn. The poset

order is intersection.

We can show, in full generality that the bal-

anced poset we get yields a presentation of

the correct Artin group.

The only missing piece (but it’s a major piece)

is showing that the poset is a lattice. [But we

can show this in some special cases.]
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