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for finite type Artin groups
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Overview

I. Finite-type Artin groups

II. Brady-Krammer complexes

III. Non-positive curvature

IV. Old and new results
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Coxeter and Artin groups

Let Γ be a finite graph with edges labeled by

integers greater than 1, and let (a, b)n be the

length n prefix of (ab)n.

Def: The Artin group AΓ is generated by its

vertices with a relation (a, b)n = (b, a)n when-

ever a and b are joined by an edge labeled n.

Def: The Coxeter group WΓ is the Artin group

AΓ modulo the relations a2 = 1 ∀a ∈ Vert(Γ).

Graph
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Artin presentation

〈a, b, c| aba = bab, ac = ca, bcbc = cbcb〉

Coxeter presentation
〈

a, b, c|
aba = bab, ac = ca, bcbc = cbcb

a2 = b2 = c2 = 1

〉
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Finite-type Artin groups

The finite Coxeter groups have been classified.

An Artin group defined by the same labeled

graph as a finite Coxeter is called a finite-type

Artin.
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Irreducible Dynkin diagrams
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Eilenberg-MacLane spaces for Artin groups

Finite-type Artin groups are fundamental groups

of complexified Coxeter hyperplane arrange-

ments quotiented by the action of the Coxeter

group.

Each finite type Artin group has a

• finite dimensional CAT(0) K(G,1)

• finite dimensional compact K(G,1)

but no known

• finite dimensional compact CAT(0) K(G,1)

Thus they do not yet qualify as CAT(0) groups,

but they are good candidates.
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Brady-Krammer Complexes

In 1998 Tom Brady and Daan Krammer inde-

pendently discovered new complexes on which

the braid groups and the other Artin groups of

finite type act.

In the case of the braid groups, the link of a

vertex in the cross section is the order complex

of a well-known combinatorial object known as

the noncrossing partition lattice.
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Noncrossing Partitions

A noncrossing partition is a partition of the

vertices of a regular n-gon so that the convex

hulls of the partitions are disjoint.

One noncrossing partition σ is contained in an-

other τ if each block of σ is contained in a block

of τ .
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{{1,4,5}, {2,3}, {6,8}, {7}}
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Factors of the Coxeter element

A3 1-6-6-1
B3 1-9-9-1
H3 1-15-15-1

A4 1-10-20-10-1
B4 1-12-24-12-1
D4 1-16-36-16-1
F4 1-24-55-24-1
H4 1-60-158-60-1

A5 1-15-50-50-15-1
B5 1-20-70-70-20-1
D5 1-25-100-100-25-1

General formulae exist for the An, Bn and Dn

types as well as explicit calculations for the ex-

ceptional ones, but no general formula explains

all of these numbers in a coherent framework.
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F4 Poset
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CAT(0)

Def: A geodesic metric space C is called (glob-

ally) CAT(0) if

∀ points x, y, z ∈ C

∀ geodesics connecting x, y, and z

∀ points p in the geodesic connecting x to y

d(p, z) ≤ d(p′, z′)

in the corresponding configuration in E
2.

x′ y′

z′

p′x y

z

p

X E2
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Piecewise Euclidean Complexes

Def: A piecewise euclidean complex X is a

simplicial complex in which each simplex is given

a Euclidean metric and the induced metrics on

the intersections always agree.

Thm: A PE complex is CAT(0) iff the link of

each cell does not contain a closed geodesic

loop of length less than 2π.

v v ’
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CAT(0) and Artin groups

Thm(T.Brady-M) The finite-type Artin groups

with at most 3 generators are CAT(0)-groups

and the Artin groups A4 and B4 are CAT(0)

groups.

Proof: The link of a vertex in the cross section

is the order complex of a fairly small poset.

It is then relatively easy to check that using

a fairly “natural” metric, each of these links

satisfy the link condition.

Conj: The Brady-Krammer complex is CAT(0)

for all Artin groups of finite type.
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CAT(0) metrics on D4 and F4

Thm(Choi): The Brady-Krammer complexes

for D4 and F4 do not support reasonable PE

CAT(0) metrics.

Reasonable means that symmetries of the group

should lead to symmetries in the metric.

Proof Idea: First determine what Euclidean

metrics on the 3-dimensional cross-section com-

plex have dihedral angles which make the edge

links (which are finite graphs) large.

Then check these metrics in the vertex links

(which are 2-dimensional PS complexes).
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The software

The program coxeter.g is a set of GAP rou-

tines used to examine Brady-Kramer complexes.

Initially developed to test the curvature of the

Brady-Krammer complexes using the “natu-

ral” metric, the routines were extensively mod-

ified by Woonjung Choi so that they

• find the 3-dimensional structure of the cross-

section

• find representive vertex and edge links (up to

automorphism)

• find the graphs for the edge links

• find the simple cycles in these graph

• find the linear system of inequalities which

need to be satisfied by the dihedral angles of

the tetrahedra.
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Dihedral angles

Thm: Let σ and τ be n-simplices and let f

be a bijection between their vertices. If the

dihedral angle at each codimension 2 face of σ

is at least as big as the dihedral angle at the

corresponding codimension 2 face of τ , then

σ and τ are similar (isometry up to a scale

factor).

Proof: ∃ai > 0 s.t.
∑

i

ai ~ui = ~0 (Minkowski).

0 = ||~0||2 =
∑

i

∑

j

aiaj(~ui · ~uj)

≥
∑

i

∑

j

aiaj(~vi · ~vj)

= ||
∑

i

ai~vi||
2 ≥ 0

This implies ~ui · ~uj = ~vi · ~vj for all i and j, which

shows σ and τ are similar.
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CAT(0) and Brady-Krammer complexes
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Types D4 and F4

D4 has:

• 162 simplices

• 15 columns

• 3 types of tetrahedra in the cross section

• 4 vertex types to check

• 21 inequalities in 9 variables

• 13 simplified inequalities in 9 variables

F4 has:

• 432 simplices

• 18 columns

• 4 types of tetrahedra in the cross section

• 7 vertex types to check

• 81 inequalities in 13 variables

• 27 simplified inequalities in 13 variables
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Type H4

The case of H4 is hard to resolve because

the defining diagram has no symmetries which

greatly increases the number of equations and

variables involved in the computations.

H4 has:

• 1350 simplices

• 23 columns

• 16 types of tetrahedra in the cross section

• 10 vertex types to check

• 2986 inequalities in 96 variables

• 638 simplified inequalities in 96 variables

The F4 and D4 cases produced systems small

enough to analyze by hand. This system is

not.
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