Hypertrees and the ¢? Betti numbers
of the pure symmetric automorphism group
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2, and P>,
L., = trivial n-link in S3.

>, = the group of motions of L, in S3.
(Introduced by Fox = Dahm = Goldsmith ---)

P>, = the index n! subgroup of motions where
the n components of L,, return to their original
positions. (This is the pure motion group.)
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Representing P>,

Thm(Goldsmith, Mich. Math. J. ‘81)
There is a faithful representation of P>, into
Aut (F(z1,...,xn)) induced by sending the gen-
erators of P>,

—

(L

to automorphisms

'J - €T. XX —3
a;;i(Ty) { ]1 i k

The image in Aut(Fy) is referred to as the
group of pure symmetric automorphisms since
it is the subgroup of automorphisms where
each generator is sent to a conjugate of itself.

Thinking of PX, as a subgroup of Aut(Fy)
we can form the image of P3>, in Out(Fy),
denoted OP3,,.



Some of What’'s Known

e P>, contains PB,,.

e P>, has cohomological dimension n — 1.
(Collins, CMH '89)

e P> ,, has a regular language of normal forms.
(Guttiérrez and Krsti¢, IJAC '98)

Our Results

Theorem A. P>, 1 isann-dim’l duality group.
(Brady-M-Meier-Miller, J. Algebra, '01)

Theorem B. The ¢?-Betti numbers of P¥,, 1,
are all trivial except in top dimension, where

X(PEpq1) = (—1)"b5) = (~1)"n" .
(M-Meier, Math. A., ‘04)

Both are cohomology computations that occur
in the universal cover of a K(PX,,4+1,1). While
both have to do with asymptotic properties
of P>, 41, the proofs ultimately boil down to
combinatorial arguments.



¢?2-Cohomology

For a group G (admitting a finite K(G,1)) let
EQ(G) be the Hilbert space of square-summable
functions. The classic cocycle is:

o
1/8 1/8
1/8 1/8
v 14
1/2
v4 1/4
o—©O
1/8 1/8
1/8 8

In general, concrete computations are rare. One
of the few is due to Davis and Leary who
compute the Ez—cohomology of arbitrary right-
angled Artin groups (Journal LMS, ‘03).
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McCullough-Miller Complex

The cohomology computations are done via
an action of OP>,, on a contractible simpli-
cial complex M M,,, constructed by McCullough
and Miller (MAMS, '96).

The complex MM, is a space of F,-actions on
simplicial trees, where the actions all take the
decomposition of Fj, as a free product

Fn=2x--*1

n copies

seriously.

Each action in this space can be described by
a marked hypertree ...



Hypertrees

Def: A hypertree is a connected hypergraph
with no hypercycles.

In hypergraphs, the “edges’ are subsets of the
vertices, not just pairs of vertices.
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The growth is quite dramatic: The number of
hypertrees on [n], for n > 3 is =

{4,29,311,4447,79745,1722681,43573820, ...}
(Smith and Warme,Kalikow)



Hypertree Poset

The hypertrees on [n] form a very nice poset,
that is surprisingly unstudied in combinatorics.

The elements of HT,, are n-vertex hypertrees
with the vertices labelled by [n] = {1,...,n}.
The order relation is given by:

r < 7' & each hyperedge of 7/ is contained in
a hyperedge of .

The hypertree with only one edge is 0, also
called the nuclear element. If one adds a for-
mal 1 such that = < 1 for all + € HT,, the
resulting poset is HT,.



An interval in HT 5
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Properties of HT ,,

The Hasse diagram of HT 4 is

Thm: HT, is a finite lattice that is graded,
bounded, and Cohen-Macaulay.

e Finite and Bounded are easy.

e | attice is easy based on the similarities
between HT, and the partition lattice. (Lattice
is the key element in the McCullough-Miller
proof that MM, is contractible.)
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Properties of MM,

The McCullough-Miller space, M M,,, is the ge-
ometric realization of a poset of marked hyper-
trees. The marking is similar (and related) to
the marked graph construction for outer space.

Some Useful Facts:

e MM, admits P>, and OP>,, actions.

e [ he fundamental domain for either action is
the same, it’s finite and isomorphic to the order
complex of HT,, (also known as the Whitehead
poset).

e [ he isotropy groups for the OP>, action

are free abelian; the isotropy groups are free-
by-(free abelian) for the action of PX,,.
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¢?-Betti Numbers

We compute the ¢2-Betti numbers of OPX,, | ¢
via its action on MM, 1. In order to do this
we have to switch to an algebraic standpoint,
using group cohomology with coefficients in
the group von Neumann algebra N(G).

We also are really computing the equivariant
(2-Betti numbers of the action of OP3,41 0N
MM, 1. We can get away with this because

Lemma. The ¢2-cohomology of Z" is trivial.

Lemma. Let X be a contractible G-complex.
Suppose that each isotropy group G4 is finite
or satisfies b]SQ)(GU) = 0 for p > 0. Then

b2 (X, N(@)) = b82)(G) for p > 0.

(cf. Lick's L2-Invariants: Theory and Appli-
cations ...)
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Reduction to Euler characteristics

In looking at the resulting equivariant spectral
sequence we find we are really looking at the
homology of

HT, 41, =HT,411 — {the nuclear vertex}

(this is the singular set for the OPX, ;1 ac-
tion.)

Since this poset is Cohen-Macaulay, all we re-
ally care about is

rank (H,—2(HT511)) = [R(HTp41))

and so computing the ¢2-Betti numbers of the
group OPX,, 41 has boiled down to computing
the Euler characteristic of the poset HT%_H.
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Reduction to Mobius functions

Realizing we need to compute 2(HT%+1) we
start filling up chalk boards with Hasse dia-
grams and compute ...

X(HTS) =28 — 36 = —8
x(HTg) = 310 — 855+ 610 = 65

etc.

Luckily, Euler characteristics are well studied
in enumerative combinatorics. In particular we
can get to the Euler characteristic of H‘I‘;;+1

by studying the Mobius function p of HT,, 1.

Fact: If u is the M&bius function of HT, 1,
then 4(0,1) = x(HT2, 1)

X(HTS) = -9
X(HT) = 64
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The Calculation and Its Corollaries

Using various recursion formulas for MODbius
functions, and a functional equation for the
number of hypertrees, it only takes 3 or 4
pages of work to show:

Thm: Y(HTS, 1) = (-1)"n"" 1.

Cor 1: The (?-Betti numbers of OPX,, 4, are

trivial, except b7(12_>1 — n"1 It follows that
n—1
b2 (0% =_" |

Cor 2: The (2-Betti numbers of P¥,yq are
trivial, except b%z) = n". It follows that

n’l’L

(n+ 1)

b$P) (5 41) =
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More recent computations

Theorem C. If G = Gy x---x Gy then
X(OWh(G)) = x(G)" 2 and
x(Wh(G)) = x(G)" 1.

Theorem D. If all the G, are finite then
X(FR(G)) = x(G)" I |Inn(G;)|
x(Aut(@)) = x(G)" Q7 T|Out(G))
x(Out(@)) = x(G)"2|Q|~ [T |Out(G,)

(Jensen-M-Meier, almost a preprint ‘04)

In general, Euler characteristics are not this
nice:

__ 375393773534736899347
x(Out(F12)) = —=5751186729816060

(Smillie-Vogtmann, ‘87)
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A hint at the underlying combinatorics

m . Rooted trees — Monomials
T —  J[=¢9" (rooted degree)
i
Example:

0,.2.,.2.,.0..1.0
T{T5X3T4TEL g

_ 221
— I5X37%5

Thm: Y m(T) = (z1 + 22+ - - )L
T

where the sum is over all rooted trees on [n]

Thm: Y m(T) = (Zj) (1 4+ 20+ - )"
T

where the sum is over all planted forests on [n]
with & components.
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