Hypertrees and the ℓ^2 Betti numbers of the pure symmetric automorphism group

Jon McCammond U.C. Santa Barbara

Σ_n and $P\Sigma_n$

 $L_n =$ trivial *n*-link in S^3 .

 $\Sigma_n =$ the group of motions of L_n in S^3 . (Introduced by Fox \Rightarrow Dahm \Rightarrow Goldsmith \cdots)

 $P\Sigma_n$ = the index n! subgroup of motions where the n components of L_n return to their original positions. (This is the *pure* motion group.)

Representing $P\Sigma_n$

Thm(Goldsmith, Mich. Math. J. '81)

There is a faithful representation of $P\Sigma_n$ into Aut $(F(x_1, \ldots, x_n))$ induced by sending the generators of $P\Sigma_n$

to automorphisms

$$\alpha_{ij}(x_k) = \begin{cases} x_k & k \neq i \\ x_j^{-1} x_i x_j & k = i \end{cases}$$

The image in $Aut(F_n)$ is referred to as the group of *pure symmetric automorphisms* since it is the subgroup of automorphisms where each generator is sent to a conjugate of itself.

Thinking of $P\Sigma_n$ as a subgroup of $Aut(F_n)$ we can form the image of $P\Sigma_n$ in $Out(F_n)$, denoted $OP\Sigma_n$.

Some of What's Known

- $P\Sigma_n$ contains PB_n .
- $P\Sigma_n$ has cohomological dimension n-1. (Collins, *CMH* '89)
- $P\Sigma_n$ has a regular language of normal forms. (Guttiérrez and Krstić, *IJAC* '98)

Our Results

Theorem A. $P\Sigma_{n+1}$ is an *n*-dim'l duality group. (Brady-M-Meier-Miller, *J. Algebra*, '01)

Theorem B. The ℓ^2 -Betti numbers of $P\Sigma_{n+1}$ are all trivial except in top dimension, where

$$\chi(P\Sigma_{n+1}) = (-1)^n b_n^{(2)} = (-1)^n n^n$$

(M-Meier, Math. A., '04)

Both are cohomology computations that occur in the universal cover of a $K(P\Sigma_{n+1}, 1)$. While both have to do with asymptotic properties of $P\Sigma_{n+1}$, the proofs ultimately boil down to combinatorial arguments.

ℓ^2 -Cohomology

For a group G (admitting a finite K(G, 1)) let $\ell^2(G)$ be the Hilbert space of square-summable functions. The classic cocycle is:

In general, concrete computations are rare. One of the few is due to Davis and Leary who compute the ℓ^2 -cohomology of arbitrary rightangled Artin groups (*Journal LMS*, '03).

McCullough-Miller Complex

The cohomology computations are done via an action of $OP\Sigma_n$ on a contractible simplicial complex MM_n , constructed by McCullough and Miller (*MAMS*, '96).

The complex MM_n is a space of F_n -actions on simplicial trees, where the actions all take the decomposition of F_n as a free product

$$F_n = \underbrace{\mathbb{Z} * \cdots * \mathbb{Z}}_{n \text{ copies}}$$

seriously.

Each action in this space can be described by a marked hypertree ...

Hypertrees

Def: A *hypertree* is a connected hypergraph with no hypercycles.

In hypergraphs, the "edges" are subsets of the vertices, not just pairs of vertices.

The growth is quite dramatic: The number of hypertrees on [n], for $n \ge 3$ is =

{4,29,311,4447,79745,1722681,43578820,...} (Smith and Warme,Kalikow)

Hypertree Poset

The hypertrees on [n] form a very nice poset, that is surprisingly unstudied in combinatorics.

The elements of HT_n are *n*-vertex hypertrees with the vertices labelled by $[n] = \{1, \ldots, n\}$. The order relation is given by: $\tau < \tau' \Leftrightarrow$ each hyperedge of τ' is contained in a hyperedge of τ .

The hypertree with only one edge is $\hat{0}$, also called the *nuclear* element. If one adds a formal $\hat{1}$ such that $\tau < \hat{1}$ for all $\tau \in HT_n$, the resulting poset is \widehat{HT}_n .

An interval in HT_5

9

Properties of HT_n

The Hasse diagram of HT_4 is

Thm: \widehat{HT}_n is a finite lattice that is graded, bounded, and Cohen-Macaulay.

• Finite and Bounded are easy.

• Lattice is easy based on the similarities between HT_n and the partition lattice. (Lattice is the key element in the McCullough-Miller proof that MM_n is contractible.)

Properties of MM_n

The McCullough-Miller space, MM_n , is the geometric realization of a poset of *marked* hypertrees. The marking is similar (and related) to the marked graph construction for outer space.

Some Useful Facts:

• MM_n admits $P\Sigma_n$ and $OP\Sigma_n$ actions.

• The fundamental domain for either action is the same, it's finite and isomorphic to the order complex of HT_n (also known as the *Whitehead* poset).

• The isotropy groups for the $OP\Sigma_n$ action are free abelian; the isotropy groups are freeby-(free abelian) for the action of $P\Sigma_n$.

ℓ^2 -Betti Numbers

We compute the ℓ^2 -Betti numbers of $OP\Sigma_{n+1}$ via its action on MM_{n+1} . In order to do this we have to switch to an algebraic standpoint, using group cohomology with coefficients in the group von Neumann algebra $\mathcal{N}(G)$.

We also are really computing the equivariant ℓ^2 -Betti numbers of the action of $OP\Sigma_{n+1}$ on MM_{n+1} . We can get away with this because

Lemma. The ℓ^2 -cohomology of \mathbb{Z}^n is trivial.

Lemma. Let X be a contractible G-complex. Suppose that each isotropy group G_{σ} is finite or satisfies $b_p^{(2)}(G_{\sigma}) = 0$ for $p \ge 0$. Then $b_p^{(2)}(X, \mathcal{N}(G)) = b_p^{(2)}(G)$ for $p \ge 0$.

(cf. Lück's L^2 -Invariants: Theory and Applications ...)

Reduction to Euler characteristics

In looking at the resulting equivariant spectral sequence we find we are really looking at the homology of

 $\label{eq:HT} \mathbf{HT}_{n+1}^{\circ} = \mathbf{HT}_{n+1} - \{ \text{the nuclear vertex} \}$ (this is the singular set for the $OP\Sigma_{n+1}$ action.)

Since this poset is Cohen-Macaulay, all we really care about is

$$\operatorname{rank}\left(H_{n-2}(\mathsf{HT}_{n+1}^{\circ})\right) = |\tilde{\chi}(\mathsf{HT}_{n+1}^{\circ})|$$

and so computing the ℓ^2 -Betti numbers of the group $OP\Sigma_{n+1}$ has boiled down to computing the Euler characteristic of the poset HT_{n+1}° .

Reduction to Möbius functions

Realizing we need to compute $\tilde{\chi}(HT_{n+1}^{\circ})$ we start filling up chalk boards with Hasse diagrams and compute ...

$$\chi(HT_4^\circ) = 28 - 36 = -8$$

 $\chi(HT_5^\circ) = 310 - 855 + 610 = 65$

etc.

Luckily, Euler characteristics are well studied in enumerative combinatorics. In particular we can get to the Euler characteristic of HT_{n+1}° by studying the Möbius function μ of \widehat{HT}_{n+1} .

Fact: If μ is the Möbius function of $\widehat{\mathsf{HT}}_{n+1}$ then $\mu(\widehat{0},\widehat{1}) = \widetilde{\chi}(\mathsf{HT}_{n+1}^{\circ})$

$$\widetilde{\chi}(\mathsf{HT}_4^\circ) = -9$$

 $\widetilde{\chi}(\mathsf{HT}_5^\circ) = 64$

The Calculation and Its Corollaries

Using various recursion formulas for Möbius functions, and a functional equation for the number of hypertrees, it only takes 3 or 4 pages of work to show:

Thm:
$$\tilde{\chi}(\mathsf{HT}_{n+1}^{\circ}) = (-1)^n n^{n-1}$$

Cor 1: The ℓ^2 -Betti numbers of $OP\Sigma_{n+1}$ are trivial, except $b_{n-1}^{(2)} = n^{n-1}$. It follows that

$$b_{n-1}^{(2)}(O\Sigma_{n+1}) = \frac{n^{n-1}}{(n+1)!}$$

Cor 2: The ℓ^2 -Betti numbers of $P\Sigma_{n+1}$ are trivial, except $b_n^{(2)} = n^n$. It follows that

$$b_n^{(2)}(\Sigma_{n+1}) = \frac{n^n}{(n+1)!}$$

More recent computations

Theorem C. If $G = G_1 * \cdots * G_n$ then $\chi(OWh(G)) = \chi(G)^{n-2}$ and $\chi(Wh(G)) = \chi(G)^{n-1}$.

Theorem D. If all the G_i are finite then $\chi(FR(G)) = \chi(G)^{n-1} \prod |Inn(G_i)|$ $\chi(Aut(G)) = \chi(G)^{n-1} |\Omega|^{-1} \prod |Out(G_i)|$ $\chi(Out(G)) = \chi(G)^{n-2} |\Omega|^{-1} \prod |Out(G_i)|$

(Jensen-M-Meier, almost a preprint '04)

In general, Euler characteristics are not this nice:

 $\chi(Out(F_{12})) = -\frac{375393773534736899347}{2191186722816000}$

(Smillie-Vogtmann, '87)

A hint at the underlying combinatorics

Example:

Thm: $\sum_{T} m(T) = (x_1 + x_2 + \cdots + x_n)^{n-1}$ where the sum is over all rooted trees on [n]

Thm: $\sum_{T} m(T) = \binom{n-1}{k-1} (x_1 + x_2 + \cdots + x_n)^{n-k}$ where the sum is over all planted forests on [n]with k components.