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Σn and PΣn

Ln = trivial n-link in S3.

Σn = the group of motions of Ln in S3.

(Introduced by Fox ⇒ Dahm ⇒ Goldsmith · · · )

PΣn = the index n! subgroup of motions where

the n components of Ln return to their original

positions. (This is the pure motion group.)
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Representing PΣn

Thm(Goldsmith, Mich. Math. J. ‘81)

There is a faithful representation of PΣn into

Aut (F (x1, . . . , xn)) induced by sending the gen-

erators of PΣn

to automorphisms

αij(xk) =

{
xk k 6= i

x−1
j xixj k = i

.

The image in Aut(Fn) is referred to as the

group of pure symmetric automorphisms since

it is the subgroup of automorphisms where

each generator is sent to a conjugate of itself.

Thinking of PΣn as a subgroup of Aut(Fn)

we can form the image of PΣn in Out(Fn),

denoted OPΣn.
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Some of What’s Known

• PΣn contains PBn.

• PΣn has cohomological dimension n − 1.

(Collins, CMH ‘89)

• PΣn has a regular language of normal forms.

(Guttiérrez and Krstić, IJAC ‘98)

Our Results

Theorem A. PΣn+1 is an n-dim’l duality group.

(Brady-M-Meier-Miller, J. Algebra, ‘01)

Theorem B. The `2-Betti numbers of PΣn+1

are all trivial except in top dimension, where

χ(PΣn+1) = (−1)nb
(2)
n = (−1)nnn .

(M-Meier, Math. A., ‘04)

Both are cohomology computations that occur

in the universal cover of a K(PΣn+1,1). While

both have to do with asymptotic properties

of PΣn+1, the proofs ultimately boil down to

combinatorial arguments.
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`2-Cohomology

For a group G (admitting a finite K(G,1)) let

`2(G) be the Hilbert space of square-summable

functions. The classic cocycle is:
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In general, concrete computations are rare. One

of the few is due to Davis and Leary who

compute the `2-cohomology of arbitrary right-

angled Artin groups (Journal LMS, ‘03).
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McCullough-Miller Complex

The cohomology computations are done via

an action of OPΣn on a contractible simpli-

cial complex MMn, constructed by McCullough

and Miller (MAMS, ‘96).

The complex MMn is a space of Fn-actions on

simplicial trees, where the actions all take the

decomposition of Fn as a free product

Fn = Z ∗ · · · ∗ Z︸ ︷︷ ︸
n copies

seriously.

Each action in this space can be described by

a marked hypertree ...
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Hypertrees

Def: A hypertree is a connected hypergraph

with no hypercycles.

In hypergraphs, the “edges” are subsets of the

vertices, not just pairs of vertices.
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The growth is quite dramatic: The number of

hypertrees on [n], for n ≥ 3 is =

{4,29,311,4447,79745,1722681,43578820, . . .}

(Smith and Warme,Kalikow)
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Hypertree Poset

The hypertrees on [n] form a very nice poset,

that is surprisingly unstudied in combinatorics.

The elements of HTn are n-vertex hypertrees

with the vertices labelled by [n] = {1, . . . , n}.

The order relation is given by:

τ < τ ′ ⇔ each hyperedge of τ ′ is contained in

a hyperedge of τ .

The hypertree with only one edge is 0̂, also

called the nuclear element. If one adds a for-

mal 1̂ such that τ < 1̂ for all τ ∈ HTn, the

resulting poset is ĤTn.
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An interval in HT5
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Properties of HTn

The Hasse diagram of HT4 is

PSfrag replacements

Thm: ĤTn is a finite lattice that is graded,

bounded, and Cohen-Macaulay.

• Finite and Bounded are easy.

• Lattice is easy based on the similarities

between HTn and the partition lattice. (Lattice

is the key element in the McCullough-Miller

proof that MMn is contractible.)
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Properties of MMn

The McCullough-Miller space, MMn, is the ge-

ometric realization of a poset of marked hyper-

trees. The marking is similar (and related) to

the marked graph construction for outer space.

Some Useful Facts:

• MMn admits PΣn and OPΣn actions.

• The fundamental domain for either action is

the same, it’s finite and isomorphic to the order

complex of HTn (also known as the Whitehead

poset).

• The isotropy groups for the OPΣn action

are free abelian; the isotropy groups are free-

by-(free abelian) for the action of PΣn.
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`2-Betti Numbers

We compute the `2-Betti numbers of OPΣn+1

via its action on MMn+1. In order to do this

we have to switch to an algebraic standpoint,

using group cohomology with coefficients in

the group von Neumann algebra N (G).

We also are really computing the equivariant

`2-Betti numbers of the action of OPΣn+1 on

MMn+1. We can get away with this because

Lemma. The `2-cohomology of Zn is trivial.

Lemma. Let X be a contractible G-complex.

Suppose that each isotropy group Gσ is finite

or satisfies b
(2)
p (Gσ) = 0 for p ≥ 0. Then

b
(2)
p (X,N (G)) = b

(2)
p (G) for p ≥ 0.

(cf. Lück’s L2-Invariants: Theory and Appli-

cations ...)
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Reduction to Euler characteristics

In looking at the resulting equivariant spectral

sequence we find we are really looking at the

homology of

HT◦
n+1 = HTn+1 − {the nuclear vertex}

(this is the singular set for the OPΣn+1 ac-

tion.)

Since this poset is Cohen-Macaulay, all we re-

ally care about is

rank
(
Hn−2(HT◦

n+1)
)
= |χ̃(HT◦

n+1)|

and so computing the `2-Betti numbers of the

group OPΣn+1 has boiled down to computing

the Euler characteristic of the poset HT◦
n+1.
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Reduction to Möbius functions

Realizing we need to compute χ̃(HT◦
n+1) we

start filling up chalk boards with Hasse dia-

grams and compute ...

χ(HT◦
4) = 28 − 36 = −8

χ(HT◦
5) = 310 − 855 + 610 = 65

etc.

Luckily, Euler characteristics are well studied

in enumerative combinatorics. In particular we

can get to the Euler characteristic of HT◦
n+1

by studying the Möbius function µ of ĤTn+1.

Fact: If µ is the Möbius function of ĤTn+1

then µ(0̂, 1̂) = χ̃(HT◦
n+1)

χ̃(HT◦
4) = −9

χ̃(HT◦
5) = 64

14



The Calculation and Its Corollaries

Using various recursion formulas for Möbius

functions, and a functional equation for the

number of hypertrees, it only takes 3 or 4

pages of work to show:

Thm: χ̃(HT◦
n+1) = (−1)nnn−1 .

Cor 1: The `2-Betti numbers of OPΣn+1 are

trivial, except b
(2)
n−1 = nn−1. It follows that

b
(2)
n−1(OΣn+1) =

nn−1

(n + 1)!
.

Cor 2: The `2-Betti numbers of PΣn+1 are

trivial, except b
(2)
n = nn. It follows that

b
(2)
n (Σn+1) =

nn

(n + 1)!
.
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More recent computations

Theorem C. If G = G1 ∗ · · · ∗ Gn then

χ(OWh(G)) = χ(G)n−2 and

χ(Wh(G)) = χ(G)n−1.

Theorem D. If all the Gi are finite then

χ(FR(G)) = χ(G)n−1 ∏
|Inn(Gi)|

χ(Aut(G)) = χ(G)n−1|Ω|−1 ∏
|Out(Gi)|

χ(Out(G)) = χ(G)n−2|Ω|−1 ∏
|Out(Gi)|

(Jensen-M-Meier, almost a preprint ‘04)

In general, Euler characteristics are not this

nice:

χ(Out(F12)) = −375393773534736899347
2191186722816000

(Smillie-Vogtmann, ‘87)
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A hint at the underlying combinatorics

m : Rooted trees → Monomials

T 7→
∏

i

xdeg i
i (rooted degree)

Example:

2

3

5

6

1

4
7→

x0
1x2

2x2
3x0

4x1
5x0

6

= x2
2x2

3x1
5

Thm:
∑

T

m(T ) = (x1 + x2 + · · ·xn)
n−1

where the sum is over all rooted trees on [n]

Thm:
∑

T

m(T ) =
(
n−1
k−1

)
(x1 + x2 + · · ·xn)n−k

where the sum is over all planted forests on [n]

with k components.
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