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Big Picture

Let X be a finite K(G,1), so the cohomology

of X is the cohomology of G.

The cohomology of X̃ is rather dull, but

H∗(X̃) = `2-cohomology and

H∗
c (X̃) = cohomology with compact supports

give interesting information about G.

Goal: Highlight how combinatorics and spec-

tral sequences can be combined to help under-

stand the asymptotic invariants of a group G.

Our main example will be the group of motions

of the trivial n-link.
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“Motions”

Ln = trivial n-link in S3.

1. H(S3) is the space of self-homeomorphisms

of the 3-sphere (compact-open topology).

2. H(S3, Ln) = the subspace of homeomor-

phisms with φ(Ln) = Ln — orientation pre-

served! — for a fixed embedding Ln ↪→ S3.

3. A motion of Ln is a path µ : [0,1] → H(S3)

such that µ(0) = the identity and

µ(1) ∈ H(S3, Ln).

4. Two motions µ and ν are equivalent if µ−1ν

is homotopic to a stationary motion, that

is, a motion contained in H(S3, Ln).

Introduced by Fox ⇒ Dahm ⇒ Goldsmith · · ·
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Σn and PΣn

Σn = the group of motions of Ln in S3.

PΣn = the index n! subgroup of motions where

the n components of Ln return to their original

positions. (This is the pure motion group.)
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Representing PΣn

Thm(Goldsmith, Mich. Math. J. ‘81)

There is a faithful representation of PΣn into

Aut (F(x1, . . . , xn)) induced by sending the gen-

erators of PΣn

to automorphisms

αij(xk) =

{
xk k 6= i

x−1
j xixj k = i

.

The image in Aut(Fn) is referred to as the

group of pure symmetric automorphisms since

it is the subgroup of automorphisms where

each generator is sent to a conjugate of itself.

Thinking of PΣn as a subgroup of Aut(Fn)

we can form the image of PΣn in Out(Fn),

denoted OPΣn.
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Some of What’s Known

• PΣn contains PBn.

• PΣn has cohomological dimension n − 1.

(Collins, CMH ‘89)

• PΣn has a regular language of normal forms.

(Guttiérrez and Krstić, IJAC ‘98)

Our Results

Theorem A. PΣn+1 is an n-dim’l duality group.

(Brady-M-Meier-Miller, J. Algebra, ‘01)

Theorem B. The `2-Betti numbers of PΣn+1
are all trivial except in top dimension, where

χ(PΣn+1) = (−1)nb
(2)
n = (−1)nnn .

(M-Meier, New Stuff )

Both are cohomology computations that occur

in the universal cover of a K(PΣn+1,1). While

both have to do with asymptotic properties

of PΣn+1, the proofs ultimately boil down to

interesting combinatorial arguments.
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`2-Cohomology

For a group G (admitting a finite K(G,1)) let

`2(G) be the Hilbert space of square-summable

functions. The classic cocycle is:
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In general, concrete computations are rare. One

of the few is due to Davis and Leary who

compute the `2-cohomology of arbitrary right-

angled Artin groups (to appear, Proc. LMS).
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Duality Groups

Def: (Bieri-Eckmann, Invent. Math. ‘73)

A group G, with a finite K(G,1), X, is an

n-dimensional duality group if ...

H∗
c (X̃) = H∗(G, ZG) is torsion-free and con-

centrated in dimension n.

m

There is a G-module D such that

Hi(G, M) ' Hn−i(G, D ⊗ M)

for all i and G-modules M .

m

The universal cover X̃ is (n − 2)-acyclic at in-

finity. (Geoghegan-Mihalik, JPAA ‘85)
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Acyclic at Infinity

Let X be a finite K(π,1). Then X̃ is m-acyclic

at infinity if given any compact C ⊂ X̃, there

is a compact D ⊃ C such that every k-cycle
supported in X̃−D is the boundary of a (k+1)-

chain supported in X̃ − C. (−1 ≤ k ≤ m)

So duality groups are groups which are as acyclic

at infinity as they can possibly be.
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Acyclic at Infinity, II

Let X be a finite K(π,1). Then X̃ is m-acyclic

at infinity if given any compact C ⊂ X̃, there

is a compact D ⊃ C such that every k-cycle
supported in X̃−D is the boundary of a (k+1)-

chain supported in X̃ − C. (−1 ≤ k ≤ m)

So duality groups are groups which are as acyclic

at infinity as they can possibly be.
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Acyclic at Infinity, II

Let X be a finite K(π,1). Then X̃ is m-acyclic

at infinity if given any compact C ⊂ X̃, there

is a compact D ⊃ C, such that every k-cycle
supported in X̃−D is the boundary of a (k+1)-

chain supported in X̃ − C. (−1 ≤ k ≤ m)

So duality groups are groups which are as acyclic

at infinity as they can possibly be.
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Examples of (Virtual) Duality Groups

• Braid groups as well as all Artin groups of

finite type. (Squier, Math. Scand. 1995, or

Bestvina, Geom. & Top. 1999)

• Mapping class groups of surfaces.

(Harer, Invent. Math. 1986)

• Out(Fn) and Aut(Fn).

(Bestvina and Feighn, Invent. Math. 2000)

• Groups like SLn(Z) and SLn(Z[1/p]).

(Borel and Serre, CMH 1974, Topology 1976)
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McCullough-Miller Complex

The cohomology computations are done via

an action of OPΣn on a contractible simpli-

cial complex MMn, constructed by McCullough

and Miller (MAMS, ‘96).

The complex MMn is a space of Fn-actions on

simplicial trees, where the actions all take the

decomposition of Fn as a free product

Fn = Z ∗ · · · ∗ Z︸ ︷︷ ︸
n copies

seriously.

Each action in this space can be described by

a marked hypertree ...
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Hypertrees

Def: A hypertree is a connected hypergraph

with no hypercycles.

In hypergraphs, the “edges” are subsets of the

vertices, not just pairs of vertices.

1

2 3

4
A= 4

2

1
3B =

1 2 3 4
C =

The growth is quite dramatic: The number of

hypertrees on [n], for n ≥ 3 is =

{4,29,311,4447,79745, 1722681, 43578820, . . .}

(Smith and Warme,Kalikow)
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Hypertree Poset

The hypertrees on [n] form a very nice poset,
that is surprisingly unstudied in combinatorics.

The elements of HTn are n-vertex hypertrees
with the vertices labelled by [n] = {1, . . . , n}.
The order relation is given by:
τ < τ ′ ⇔ each hyperedge of τ ′ is contained in
a hyperedge of τ .

The hypertree with only one edge is 0̂, also
called the nuclear element. If one adds a for-
mal 1̂ such that τ < 1̂ for all τ ∈ HTn, the
resulting poset is ĤTn.

1 2 3 4
C =

|

4

2

1
3B =

|
1

2 3

4
A=
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Properties of HTn

The Hasse diagram of HT4 is

Thm: ĤTn is a finite lattice that is graded,

bounded, and Cohen-Macaulay.

• Finite and Bounded are easy.

• Lattice is easy based on the similarities

between HTn and the partition lattice. (Lattice

is the key element in the McCullough-Miller

proof that MMn is contractible.)
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Cohen-Macaulay

A poset is Cohen-Macaulay if its geometric re-

alization is Cohen-Macaulay, that is,

H̃i(lk(σ), Z) = 0

for all simplices σ (including the empty sim-

plex) and all i < dim(lk(σ)).

(X Cohen-Macaulay ⇒ X is h.e. to a bouquet

of spheres.)

The Cohen-Macaulay property is actually the

key step in BM3’s proof that PΣn is a duality

group.

We show HTn is Cohen-Macaulay by showing

that ...

ĤTn is shellable, which we get by ...

Proving ĤTn admits a recursive atom ordering.
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Properties of MMn

The McCullough-Miller space, MMn, is the ge-

ometric realization of a poset of marked hyper-

trees. The marking is similar (and related) to

the marked graph construction for outer space.

Some Useful Facts:

• MMn admits PΣn and OPΣn actions.

• The fundamental domain for either action is

the same, it’s finite and isomorphic to the order

complex of HTn (also known as the Whitehead

poset).

• The isotropy groups for the OPΣn action

are free abelian; the isotropy groups are free-

by-(free abelian) for the action of PΣn.
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Good News/Bad News

The asymptotic topology of a group G is the

asymptotic topology of the universal cover of

a K(G,1).

Good News: We have a contractible, cocom-

pact PΣn-complex.

Bad News: The action isn’t free or even proper.

Good News: The stabilizers are well under-

stood.

Punch Line: In order to understand the asymp-

totic topology of PΣn we don’t want to study

the asymptotic topology of MMn. We do want

to understand the combinatorics of HTn and

the isotropy groups.
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Proving Duality

You can prove that a group is a duality group

by showing the cohomology with group ring

coefficients is trivial, except in top dimension

where it’s torsion-free.

Idea: Use the equivariant spectral sequence

with ZG coefficients

E
pq
1 =

∏

|σ|=p

Hq(Gσ, ZG) ⇒ Hp+q(G, ZG)

for the action of OPΣn on MMn.

Problem: The size of the isotropy groups for

the action on the poset corresponds with the

corank of the elements. But it does not corre-

spond well with the dimension of simplices in

the geometric realization.
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The First Page

The standard equivariant spectral sequence ap-

plied to the action of OPΣ5 on MM5 has its

first page something like:

-

6

∞⊕

i=0

Z

∞⊕

i=0

Z

∞⊕

i=0

Z

∞⊕

i=0

Z

∞⊕

i=0

Z

∞⊕

i=0

Z

∞⊕

i=0

Z

∞⊕

i=0

Z

∞⊕

i=0

Z

∞⊕

i=0

Z

0

0 0

0 0 0
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A Better Idea

Filter MMn by the poset rank not dimension.

Then the first page becomes

-

6

∞⊕

i=0

Z

∞⊕

i=0

Z

∞⊕

i=0

Z

∞⊕

i=0

Z

0

0 0

0 0 0

0 0 0

0 0

0

It is this simple because the fundamental do-

main is Cohen-Macaulay.

(Brown-Meier, CMH ‘00)
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`2-Betti Numbers

We compute the `2-Betti numbers of OPΣn+1

via its action on MMn+1. In order to do this

we have to switch to an algebraic standpoint,

using group cohomology with coefficients in

the group von Neumann algebra N (G).

We also are really computing the equivariant

`2-Betti numbers of the action of OPΣn+1 on

MMn+1. We can get away with this because

Lemma. The `2-cohomology of Zn is trivial.

Lemma. Let X be a contractible G-complex.

Suppose that each isotropy group Gσ is finite

or satisfies b
(2)
p (Gσ) = 0 for p ≥ 0. Then

b
(2)
p (X,N (G)) = b

(2)
p (G) for p ≥ 0.

(cf. Lück’s L2-Invariants: Theory and Appli-

cations ...)
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Reduction to Euler characteristics

In looking at the resulting equivariant spectral

sequence we find we are really looking at the

homology of

HT◦
n+1 = HTn+1 − {the nuclear vertex}

(this is the singular set for the OPΣn+1 ac-

tion.)

Since this poset is Cohen-Macaulay, all we re-

ally care about is

rank
(
Hn−2(HT◦

n+1)
)
= |χ̃(HT◦

n+1)|

and so computing the `2-Betti numbers of the

group OPΣn+1 has boiled down to computing

the Euler characteristic of the poset HT◦
n+1.
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Reduction to Möbius functions

Realizing we need to compute χ̃(HT◦
n+1) we

start filling up chalk boards with Hasse dia-

grams and compute ...

χ(HT◦
4) = 28 − 36 = −8

χ(HT◦
5) = 310 − 855 + 610 = 65

etc.

Luckily, Euler characteristics are well studied

in enumerative combinatorics. In particular we

can get to the Euler characteristic of HT◦
n+1

by studying the Möbius function µ of ĤTn+1.

Fact: If µ is the Möbius function of ĤTn+1

then µ(0̂, 1̂) = χ̃(HT◦
n+1)

χ̃(HT◦
4) = −9

χ̃(HT◦
5) = 64
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Exponential generating functions

The weight of a hypertree on [n] is

u
λ2
2 · · ·uλn

n where λi counts the number of

i-edges.

Let Tn be the sum of all the weights of hyper-

trees on [n], and let Rn be the sum of all the

weights of rooted hypertrees on [n].

T3 = u3 + 3u2
2

T4 = u4 + 12u2u3 + 16u3
2

Rn = n · Tn

Let T =
∑

n
Tn

tn

n!
and let R =

∑

n
Rn

tn

n!

Thm(Kalikow) R = tey where

y =
∑

j≥1

uj+1
Rj

j!
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The Calculation and Its Corollaries

Using various recursion formulas for Möbius

functions, and Kalikow’s functional equation,

it only takes 3 or 4 pages of work to show:

Thm: χ̃(HT◦
n+1) = (−1)nnn−1 .

Cor 1: The `2-Betti numbers of OPΣn+1 are

trivial, except b
(2)
n−1 = nn−1. It follows that

b
(2)
n−1(OΣn+1) =

nn−1

(n + 1)!
.

Cor 2: The `2-Betti numbers of PΣn+1 are

trivial, except b
(2)
n = nn. It follows that

b
(2)
n (Σn+1) =

nn

(n + 1)!
.
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Open Questions

• Is PΣn (bi)automatic?

(Guttiérrez and Krstić)

• Is PΣn CAT(0)?

(The complex MMn is not CAT(0))

• Is PΣn linear?

• What about the motion groups of other

links?

• What about the motion groups of higher

dimensional links? (2-spheres in R4, for

example.)

• What’s the asymptotic topology of

Aut(G1 ∗ · · · ∗ Gn) where |Gi| < ∞?

27


