Hypertrees and the pure
symmetric automorphism group
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Big Picture

Let X be a finite K(G,1), so the cohomology
of X is the cohomology of G.

The cohomology of X is rather dull, but

H*(X) = ¢?-cohomology and
H?()A(/) = cohomology with compact supports

give interesting information about G.

Goal: Highlight how combinatorics and spec-
tral sequences can be combined to help under-
stand the asymptotic invariants of a group G.
Our main example will be the group of motions
of the trivial n-link.



‘“‘Motions”

Ly, = trivial n-link in S3.

1. H(S3) is the space of self-hnomeomorphisms
of the 3-sphere (compact-open topology).

2. H(S3,L,) = the subspace of homeomor-
phisms with ¢(L,) = L, — orientation pre-
served! — for a fixed embedding L, — S3.

3. A motion of Ly, is a path u: [0,1] — H(S3)
such that ©(0) = the identity and
u(1) € H(S3, Ly).

4. Two motions u and v are equivalent if M_lz/

IS homotopic to a stationary motion, that
is, a motion contained in H(S3,L,).

Introduced by Fox = Dahm = Goldsmith ---
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2, and P>,
>, = the group of motions of L, in S3.

P>, = the index n! subgroup of motions where
the n components of L,, return to their original
positions. (This is the pure motion group.)
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Representing P>,

Thm(Goldsmith, Mich. Math. J. ‘81)
There is a faithful representation of P>, into
Aut (F(z1,...,xn)) induced by sending the gen-
erators of P>,

—

(L

to automorphisms

(@) =1 1"
Oé?’] Tk) = ZU]_]'xZ:Uj k =1

The image in Aut(Fy) is referred to as the
group of pure symmetric automorphisms since
it is the subgroup of automorphisms where
each generator is sent to a conjugate of itself.

Thinking of PX, as a subgroup of Aut(Fy)
we can form the image of PX>, in Out(Fy),
denoted OP3,,.



Some of What’s Known

e P>, contains PB,.

e P>, has cohomological dimension n — 1.
(Collins, CMH '89)

e P> ,, has a regular language of normal forms.
(Guttiérrez and Krsti¢, IJAC ‘'98)

Our Results

Theorem A. P>, 11 isann-dim’l duality group.
(Brady-M-Meier-Miller, J. Algebra, ‘'01)

Theorem B. The (?-Betti numbers of P¥,, 1,
are all trivial except in top dimension, where

X(PE,11) = (1)) = (~1)"" .
(M-Meier, New Stuff)

Both are cohomology computations that occur
in the universal cover of a K(PX,,4+1,1). While
both have to do with asymptotic properties
of P>, 41, the proofs ultimately boil down to
interesting combinatorial arguments.



¢?~-Cohomology

For a group G (admitting a finite K(G,1)) let
EQ(G) be the Hilbert space of square-summable
functions. The classic cocycle is:

1/8 1/8
1/8 1/8
1/4 14
1/2
v4 1/4
oo

1/8 1/8
1/8 8

In general, concrete computations are rare. One
of the few is due to Davis and Leary who
compute the EQ—COhomoIogy of arbitrary right-
angled Artin groups (to appear, Proc. LMS).
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Duality Groups

Def: (Bieri-Eckmann, Invent. Math. '73)
A group G, with a finite K(G, 1), X, is an
n-dimensional duality group if ...

H*(X) = H*(G,ZQ) is torsion-free and con-
centrated in dimension n.

)

There is a G-module D such that
HY(G,M) ~ H,,_(G,D ® M)

for all 2 and G-modules M.

)

The universal cover X is (n — 2)-acyclic at in-
finity. (Geoghegan-Mihalik, JPAA ‘85)



Acyclic at Infinity

Let X be a finite K(x,1). Then X is

—

if given any compact C C X,




there
is a compact D O C




Acyclic at Infinity, II

Let X be a finite K(x,1). Then X is

if given any compact C' C X, there
iIs @ compact D D C such that every
supported in X —D
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is the boundary of a (k+1)-
chain supported in X —C. (-1 <k <m)

So duality groups are groups which are as acyclic
at infinity as they can possibly be.

10-a



Examples of (Virtual) Duality Groups

e Braid groups as well as all Artin groups of
finite type. (Squier, Math. Scand. 1995, or
Bestvina, Geom. & Top. 1999)

e Mapping class groups of surfaces.
(Harer, Invent. Math. 1986)

e Out(Fn) and Aut(Fy).
(Bestvina and Feighn, Invent. Math. 2000)

e Groups like SLy(Z) and SLy(Z[1/p]).
(Borel and Serre, CMH 1974, Topology 1976)
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McCullough-Miller Complex

The cohomology computations are done via
an action of OP>,, on a contractible simpli-
cial complex M M,,, constructed by McCullough
and Miller (MAMS, '96).

The complex MM, is a space of F,-actions on
simplicial trees, where the actions all take the
decomposition of Fj, as a free product

Fo=20x-- -7

Ve

n copies

seriously.

Each action in this space can be described by
a marked hypertree ...
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Hypertrees

Def: A hypertree is a connected hypergraph
with no hypercycles.

In hypergraphs, the “edges’ are subsets of the
vertices, not just pairs of vertices.

/ol 4o\ 1
o e s
.2 3, 2

c=C_ O ¢
2 3 4

The growth is quite dramatic: The number of
hypertrees on [n], for n > 3 is =

{4,29,311,4447,79745,1722681,43578820, ...}

(Smith and Warme, Kalikow)
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Hypertree Poset

The hypertrees on [n] form a very nice poset,
that is surprisingly unstudied in combinatorics.

The elements of HT,, are n-vertex hypertrees
with the vertices labelled by [n] = {1,...,n}.
The order relation is given by:

T < 7 & each hyperedge of 7/ is contained in
a hyperedge of .

The hypertree with only one edge is 0, also
calleq the nuclear eIemAent. If one adds a for-
mal 1 such that < 1 for all - € HT,, the

e~

resulting poset is HT,,.

C=

%
)

1 4

w
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Properties of HT ,,

The Hasse diagram of HT 4 is

Thm: HT, is a finite lattice that is graded,
bounded, and Cohen-Macaulay.

e Finite and Bounded are easy.

e | attice is easy based on the similarities
between HT, and the partition lattice. (Lattice
is the key element in the McCullough-Miller
proof that MM, is contractible.)
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Cohen-Macaulay

A poset is Cohen-Macaulay if its geometric re-
alization is Cohen-Macaulay, that is,

H;(Ik(0),Z) =0
for all simplices o (including the empty sim-

plex) and all 1 < dim(lk(o)).

(X Cohen-Macaulay = X is h.e. to a bouquet
of spheres.)

The Cohen-Macaulay property is actually the
key step Iin BM3's proof that P>, is a duality
group.

We show HT, is Cohen-Macaulay by showing
that ...

HT, is shellable, which we get by ...
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Properties of MM,

The McCullough-Miller space, M M,,, is the ge-
ometric realization of a poset of marked hyper-
trees. The marking is similar (and related) to
the marked graph construction for outer space.

Some Useful Facts:
e M M, admits P>,, and OP>, actions.

e [ he fundamental domain for either action is
the same, it's finite and isomorphic to the order
complex of HT,, (also known as the Whitehead
poset).

e [ he isotropy groups for the OP>,, action
are free abelian; the isotropy groups are free-
by-(free abelian) for the action of PX,,.
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Good News/Bad News

The asymptotic topology of a group G is the
asymptotic topology of the universal cover of
a K(G,1).

We have a contractible, cocom-
pact P> ,-complex.

Bad News: The action isn’'t free or even proper.

T he stabilizers are well under-
stood.

Punch Line: In order to understand the asymp-
totic topology of P>, we don’'t want to study
the asymptotic topology of M M,,. We do want
to understand the combinatorics of HT, and
the isotropy groups.
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Proving Duality

You can prove that a group is a duality group
by showing the cohomology with group ring
coefficients is trivial, except in top dimension
where it's torsion-free.

Use the equivariant spectral sequence
with ZG coefficients

EYM = T[] HYGs,ZG) = HPTI(G,ZG)
lo|=p
for the action of OP>,, on M M,,.

Problem: The size of the isotropy groups for
the action on the poset corresponds with the
corank of the elements. But it does not corre-
spond well with the dimension of simplices in
the geometric realization.
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The First Page

T he standard equivariant spectral sequence ap-
plied to the action of OP>g on M Mg has its
first page something like:

|

P 7 0 0 0
1=0

00 00

Dz Dz 0 0
1=0 1=0

00 00 00

Dz Dz DZ O
1=0 1=0 1=0

00 00 00 00
bz Dbz bz DZ
1=0 1=0 1=0 1=0
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A Better Idea

Filter M M,, by the poset rank not dimension.
Then the first page becomes

‘ o
Pz 0 0 0
1=0
0. @)
0 Pz 0 0
1=0
0. @)
0 0 Pz 0
1=0
0. @)
0 0 0 &z
1=0

It is this simple because the fundamental do-
main is Cohen-Macaulay.
(Brown-Meier, CMH ‘00)
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2-Betti Numbers

We compute the ¢2-Betti numbers of OPX,, | ¢
via its action on MM, 4. In order to do this
we have to switch to an algebraic standpoint,
using group cohomology with coefficients in
the group von Neumann algebra N (G).

We also are really computing the equivariant
(2-Betti numbers of the action of OP%>,41 0N
MM,41. We can get away with this because

Lemma. The ¢2-cohomology of Z" is trivial.

Lemma. Let X be a contractible G-complex.
Suppose that each isotropy group Gs is finite
or satisfies b](gz)(Gg) = 0 for p > 0. Then

b2 (X, N(@)) = b82)(G) for p > 0.

(cf. Lick's L2-Invariants: Theory and Appli-
cations ...)
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Reduction to Euler characteristics

In looking at the resulting equivariant spectral
sequence we find we are really looking at the
homology of

HT, ., =HT,41 — {the nuclear vertex}

(this is the singular set for the OPX, ;1 ac-
tion.)

Since this poset is Cohen-Macaulay, all we re-
ally care about is

rank (H,—2(HT51 1)) = [R(HTp41))

and so computing the ¢2-Betti numbers of the
group OPX,, 4 has boiled down to computing
the Euler characteristic of the poset HT%_H.

23



Reduction to Mobius functions

Realizing we need to compute )Z(HTjiH_l) we
start filling up chalk boards with Hasse dia-
grams and compute ...

X(HTS) =28 — 36 = —8
Xx(HTg) = 310 — 855 + 610 = 65

etc.

Luckily, Euler characteristics are well studied
in enumerative combinatorics. In particular we
can get to the Euler characteristic of HTjiH_1

by studying the M&bius function pu of HT,, 4 1.

Fact: If u is the Mobius function of HT 44
then ©(0,1) = X(HT?2 1)

Xx(HTZ2) =-9
X(HTZ) = 64
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Exponential generating functions

The weight of a hypertree on [n] is
ug‘Q . Uq){” where A; counts the number of
1-edges.

Let T;, be the sum of all the weights of hyper-
trees on [n], and let R, be the sum of all the
weights of rooted hypertrees on [n].

T3 = u3z + 3u%
Ty = ug + 12ususz + 16u%
n t?’L

{
! and let R=) Rp—

n

Let T =) Tn
n

Thm(Kalikow) R = teY where

RJ
y= w1
j>1 J
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The Calculation and Its Corollaries

Using various recursion formulas for MOoObius
functions, and Kalikow's functional equation,
it only takes 3 or 4 pages of work to show:

Thm: Y(HT 1) = (-1)"n"" 1.

Cor 1: The £?-Betti numbers of OP¥,, y, are
trivial, except bff_)l — n"~1 It follows that

nn—l

2
b2 (0T, 41) = D

Cor 2: The (2-Betti numbers of P¥, , are
trivial, except bf,(f) = n". It follows that

n?’L

b2 (Eng1) =
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Open Questions

e Is P> ,, (bi)automatic?
(Guttiérrez and Krstic)

o Is PY,, CAT(0)?
(The complex M My, is not CAT(0))

e Is P>, linear?

e \WWhat about the motion groups of other
links?

e \What about the motion groups of higher
dimensional links? (2-spheres in R4, for
example.)

e \What's the asymptotic topology of
Aut(G1 *x---x Gp) wWhere |G;| < c0?
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