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Labeled posets

Main Idea: Let P be a labeled poset. If the

labels “act like” group elements, there is often

a group in the background which is closely tied

to P .

Let P be a bounded graded poset and let I(P )

be the set of intervals in P . Bounded and

graded imply finite height but P can be ar-

bitrarily “fat” (in Ziegler’s terminology). In

particular, P need not be finite.

Def: A labeling of P by a set S is a map

λ : I(P ) → S

Typically, labels are only given to covering

relations, but...
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Converting edge labelings

Edge labelings can be converted into interval

labelings as follows.

• Label saturated chains with the words.

• Label intervals with languages.

The set S in this case would be a collection of

languages.

a

a

a

a

b

b b

b

The “label” on [0̂, 1̂] for the righthand poset

would be {aba, bab}.
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Posets, Monoids, Groups and Complexes

Define M(P ) / G(P ) to be the monoid / group

generated by the label set and relations equat-

ing the the labels on any two chains which start

and end at the same elements.

a

b

M = M(P ) = Mon〈a, b | aba = bab〉

G = G(P ) = Grp〈a, b | aba = bab〉

Now view the labels as elements of the group

G and define K = K(P ) as the quotient of

the order complex of P where simplices with

identical labels are identified respecting orien-

tations.
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Group-like posets

The main property which helps a labeling lead

to an interesting group is being group-like.

Def: A labeled poset P is called group-like if

whenever chains x ≤ y ≤ z and x′ ≤ y′ ≤ z′ have

two pairs of corrsponding labels in common,

the third pair of labels are also equal.

x′

y′

z′

x

y

z

Thus labels can be multiplied and canceled

inside P .
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Balanced posets

Define

L(P ) = {λ(0̂, p) : p ∈ P}

C(P ) = {λ(p, q) : p, q ∈ P}

R(P ) = {λ(p, 1̂) : p ∈ P}

P is balanced if L(P ) = R(P ).

a

a

a

a

b

b b

b

If P is both balanced and group-like, then L(P ) =

C(P ) = R(P ). P is also self-dual and locally

self-dual.
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Garside structures

Let P be a bounded, graded, labeled poset.

If P is balanced and group-like then it is Garside-

like. If P is also a lattice then it is a Garside

structure.*

a

b

c

Boolean lattices with the natural labeling are

examples of Garside structures.

* There is a slightly more general definition of

Garside structures in the group theory context.
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What are Garside structures good for?

If P is a Garside structure then

• P →֒ M →֒ G

• P embeds in the Cayley graph of M (and G)

• G is the group of fractions of M

• The word problem for G is solvable

• π1(K) = G and K̃ is contractible

As a consequence, the cohomology of G is

that of K, the cohomological dimension of G

is bounded above by the height of P , and G is

torsion-free, etc., etc.

The combinatorics of P (as a labeled poset)

dominate and control the structure of G.
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Why balanced?

In order for a monoid M to embed in some

group, it is necessary for it to be cancellative

and it is sufficient for it to be cancellative and

have right common multiples.

Lem: If P is balanced, then M(P ) has right

common multiples.

Proof: Let δ be the label in the interval [0̂, 1̂].

δ

δ

δ

δ

δ

δ

δ

δ

δ

δ

δ

δ
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Why lattice?

The lattice property is used twice.

1. It is needed to show that P cancellative

implies M is cancellative.

2. It is needed to show that the complex K̃ is

contractible (a Quillen type application).

Unfortunately, our supply of techniques for

proving that something is a lattice is rather

limited. For example, is this a lattice?
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Signed groups

One way to construct Garside-like structures is

to start with a group, or better a signed group.

Def: Call a group G generated by a set S

signed if there is a map G → C2 such that all

the elements of S are sent to the non-identity

element of C2.

Ex: Groups with even presentations are signed.

Groups generated by orientation-reversing

isometries of a Riemannian manifold are signed.

Orient the edges of the Cayley graph according

to the distance from the identity.

Lem: If G generated by S is signed and S′

is the closure of S under conjugacy, then ev-

ery interval in the poset formed by the Cayley

graph of G with respect to S′ has a Garside-like

labeling.
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Isom(Xn)

Thm (Brady-Watt) If δ is a isometry of Rn

fixing only the origin, then the interval [1, δ] in

Isom0(R
n) ∼= Isom(Sn−1) is isomorphic to the

poset of linear subspaces of Rn under reverse

inclusion. The map sends each element to its

fixed subspace.

Cor: Every interval in Isom(Sn) is a lattice

(and hence a Garside structure).

Thm (BCKM) For n ≥ 4, Isom(Rn) is not

a lattice, but it can be extended to a com-

plete lattice in a minimal, canonical, and un-

derstandable way.

These complicated posets with their continu-

ous set of generators play a crucial role in the

understanding of the finite and affine versions

of non-crossing partitions.
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Coxeter groups and Artin groups

Let Γ be a finite graph with edges labeled by

integers greater than 1, and let (a, b)n be the

length n prefix of (ab)n.

Def: The Artin group AΓ is generated by its

vertices with a relation (a, b)n = (b, a)n when-

ever a and b are joined by an edge labeled n.

Def: The Coxeter group WΓ is the Artin group

AΓ modulo the relations a2 = 1 ∀a ∈ Vert(Γ).

Graph

a

b

c2

3 4

Artin presentation

〈a, b, c| aba = bab, ac = ca, bcbc = cbcb〉

Coxeter presentation〈
a, b, c|

aba = bab, ac = ca, bcbc = cbcb

a2 = b2 = c2 = 1

〉
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Coxeter groups and arrangements

Each finite Coxeter group corresponds to a

highly symmetric reflection arrangement. The

fundamental group of the complexified version

of the hyperplane arrangement is a (pure) Artin

group.

For example, the symmetric group leads to the

braid arrangement, whose fundamental group

is the (pure) braid group.

2 3 41

1 2 3 4

(34)

(23)

(12)

(34)

(23)

(12)

(23)

(34)

(12)

(23)

2 3 41

1 2 3 4
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Coxeter groups are natural

Coxeter groups are a natural generalization of

finite reflection groups and they are amazingly

nice to work with.

1. They have a decidable word problem

2. They are virtually torsion-free

3. They act cocompactly on nonpositively

curved spaces

4. They are linear

5. They are automatic

Also every Coxeter group acts by reflections on

some highly symmetric space, such as Sn, Rn,

Hn or something higher rank.
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Artin groups are natural yet mysterious

Artin groups are “natural” in the sense that

they are closely tied to the complexified ver-

sion of the hyperplane arrangements for Cox-

eter groups.

But they are “mysterious” in the sense that it

is unknown if

1. They have a decidable word problem

2. They are (virtually) torsion-free

3. They have finite (dimensional) K(π,1)s

4. They are linear (i.e. have a faithful matrix

representation)

Even the Artin groups corresponding to affine

Coxeter groups have been mysterious until this

past year.
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Examples of Garside structures

Braid groups and other finite-type Artin groups

each have two Garside structures. For the 3-

string braid group the two posets are shown.

The second one is the dual of the first.

a

b

c
a

b

〈a, b|aba = bab〉 = 〈a, b, c|ab = bc = ca〉
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The A3 Poset and its dual

The standard Garside structure a braid group

is a height function applied to the 1-skeleton

of a permutahedron (which is the Cayley graph

of Sn with respect to the adjacent transposi-

tions).

The dual structure is the non-crossing partition

lattice for a n-gon.

1 2

34

19



Garside structures for finite Coxeter groups

Let W be a finite Coxeter group. The W -

permutahedron is one Garside structure. The

poset NCW which records the minimal factor-

izations of a Coxeter element of W into reflec-

tion is a second. The latter is known as either

the dual Garside structure of type W or the

noncrossing partitions of type W .
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The dual D4 Poset
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The dual F4 Poset
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Why “dual”?

[Bessis - “The Dual Braid Monoid”]

S = standard generators

T = set of all “reflections”

c = a Coxeter element =
∏

s

w0 = the longest element in W

n = the rank (dimension) of W

N = # reflections = # of positive roots

h = Coxeter number = order of c

Classical
poset

Dual
poset

Other names Weak order Noncrossing

Set of atoms S T

Number of atoms n N

Product of atoms c w0
Regular degree h 2

Height N n

λ(0̂, 1̂) w0 c
Order of λ(0̂, 1̂) 2 h
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Garside structures for Coxeter groups

The poset of minimal factorizations of a Cox-
eter element c over the set of all reflections in
an arbitrary Coxeter group produces a Garside-
like poset. All that is missing is a proof of the
lattice condition.

Ex: Free Coxeter groups.

Z2 ∗ Z2 = 〈a, b | a2 = b2 = 1〉

a

b a

bc

d

. . . . . .

G(P ) = 〈ai|aiai+1 = ajaj+1〉

This example is certainly a lattice, but the 3-
generated version is less clear. What is this
group?
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Garside structures for free Coxeter groups

The Artin group defined by this poset is the

free group and the construction in this case

leads to a universal cover which is an infinitely

branching tree cross the reals with a free F2

action.

Not the usual presentation of F2 but it is a

K(F2,1) space with a conjugacy closed gener-

ating set.

Start with the free Coxeter group generated by

x1, x2, . . . , xn and let c = x1x2 · · ·xn. We can

start building a Garside structure by continu-

ing to add paths (and generators) to create

a bounded graded, consistently edge-labeled

poset which is balanced.

a

b a

bc

d

. . . . . .
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A more topological definition

Let D∗ denote the unit disc with n puntures
and 4 distinguished boundary points, N , S, E

and W .

Def: A cut-curve is an isotopy class (in D∗) of
a path from E to W (rel endpoints, of course).

S

N

EW

Notice that cut-curves divide D∗ into two pieces,
one containing S and the other containing N .
Its height is the number of puncture in the
lower piece.
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Poset of cut-curves

Let [c] and [c′] be cut-curves. We write

[c] ≤ [c′] if there are representatives c and c′

which are disjoint (except at their endpoints)

and c is “below” c′.

S

N

EW

Notice that if representative c is given, then

we can tell whether [c] ≤ [c′] by keeping c fixed

and isotoping c′ into a “minimal position” with

respect to c (i.e. no football shaped regions

with no punctures).
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Proving lattice: the free case

Lemma The poset of cut-curves is a lattice.

S

N

EW

Proof: Suppose [c] is above [c1] and [c2]. Place

representatives c1 and c2 in minimal position

with respect to each other (i.e. no football re-

gions) and then isotope c so that it is disjoint

from both. This c is above the dotted line.

Thus the dotted line represents a least upper

bound for [c1] and [c2].
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Noncrossing curve diagrams

Using a modification of these noncrossing curve

diagrams, we can prove

Thm (BCKM) For every Coxeter group W ,

the poset NCW embeds into the Artin group

A and the complex K has A as its fundamental

group.

Thus, these posets do define the right groups

and they are defined using Coxeter groups so

they can be worked with concretely, effectively

and efficiently.

A modified version of the lattice argument shows

the following.

Thm (BCKM) If every relation in W is “long”

then the poset NCW is a lattice and a Garside

structure.
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Proving lattice: the finite case

As you can see, the trickiest aspect in all of

this proving that these well-defined posets are

lattices.

Until recently, the only known proof of the lat-

tice property – even in the finite case – was

a case by case proof which used a brute force

computer check for the exceptional groups.

There is now a uniform proof of the lattice

property using the embedding of finite poset

NCW into the continuous poset Isom0(R
n) (and

repeatedly applying the results by Tom Brady

and Colum Watt).

Thm (M) For every set of reflections closed

under conjugacy, the poset of factorizations

inside Isom0(R
n) is a lattice.
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Proving lattice: the affine case

We have made great progress in understanding

the poset NCW for the affine Coxeter groups

using their embedding into the continuous poset

Isom(Rn). Although they are not always lat-

tices, they are always “close”. In particular,

they are close enough that we can recover

most of the consequences of having a Garside

structure.

Thm (BCKM) For every affine Coxeter group

W , the poset NCW is almost a lattice and as

a result most of the consequences of a Garside

structure also follow for these groups, including

that the complex K has a contractible universal

cover.
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