Math 54, Spring 2009, Sections 109 and 112 Midterm 2 Review

This sheet mentions a lot of the major ideas from Chapters 4, 5 and 6. It is inevitably inexhaustive, but hopefully it can help you notice some areas where you might need to review some more.

\mathbb{R}^{n} vs. Vector spaces

- In \mathbb{R}^{n}, we had defined operators of scalar multiplication and addition. Inspired by this, we defined a vector space to be any set of objects that have addition and scalar multiplication operations that behave like those in \mathbb{R}^{n}, with the full list of axioms given on p.217.
- We can then define the concepts of subspaces, spanning and linear independence the same way we did for \mathbb{R}^{n}. Note: if H is a subspace of V, then H is again a vector space, with the same operations as V.
- Just like with vector spaces, a basis is a linearly independent spanning set. However, not all vector spaces have finite bases. A vector space with a finite basis is called finite-dimensional. All bases for a given finite-dimensional vector space have the same number of elements.
- Any linearly independent set in a vector space can be expanded to a basis by adding more elements. Any spannig set can be contracted to a basis by removing redundent elements. To do this, order your spanning set, and keep removing vectors that can be written as linear combinations of the ones before.
- Informally speaking, any (finite-dimensional) vector space with dimension n looks and feels like \mathbb{R}^{n}. What is the formal version of this statement? If \mathcal{B} is a basis for V, then the coordinate map $[\cdot]_{\mathcal{B}}$ is an invertible linear transformation (isomorphism) between V and \mathbb{R}^{n}. This isomorphism can be used to prove that V shares many of the same properties as \mathbb{R}^{n} (p.250-251).
- If \mathcal{B} and \mathcal{C} are different bases for V, we may be interested in the relationship between $[\vec{x}]_{\mathcal{B}}$ and $[\vec{x}]_{\mathcal{C}}$. For any pair of bases, there is a unique, invertible matrix $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ such that $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}[\vec{x}]_{\mathcal{B}}=[\vec{x}]_{\mathcal{C}}$ for all $\vec{x} \in V$ (p.273).
- More generally, if $T: V \rightarrow W$ is a linear transformation, \mathcal{B} is a basis for V, and \mathcal{C} is a basis for W, then there is a unique matrix M such that $M[\vec{x}]_{\mathcal{B}}=[T(\vec{x})]_{\mathcal{C}}$ (p. 329). If $V=W$, then $M=\underset{\mathcal{C} \leftarrow \mathcal{B}}{P_{\mathcal{B}}}$. Since V and W are just \mathbb{R}^{n} and \mathbb{R}^{m} in disguise, you can think of M as doing the same thing as T, just on the undisguised versions of V and W.
- If $V=W$ and $\mathcal{B}=\mathcal{C}$ in the previous bullet point, then the matrix M is called $[T]_{\mathcal{B}}$, the \mathcal{B}-matrix of T. Note: this is the same notation as coordinates, but this is different; this does not mean we are taking the coordinates of a matrix. However, we do have $[T(\vec{x})]_{\mathcal{B}}=[T]_{\mathcal{B}}[\vec{x}]_{\mathcal{B}}$ if $T: V \rightarrow V$ is a linear transformation.

Eigenvectors and eigenvalues

- An eigenvector/eigenvalue pair for a matrix A is a non-zero vector x and a scalar λ such that $A \vec{x}=\lambda \vec{x}$. The eigenspace of a matrix A with respect to the eigenvalue λ is the set of all eigenvectors of A with eigenvalue λ, along with the zero vector. Alternatively, it is the subspace $\operatorname{Nul}(A-\lambda I)$.
- If a matrix is triangular (or diagonal), the eigenvalues are the entries on the diagonal. If not, you can find the eigenvalues by finding the roots of the characterisic polynomial $\operatorname{det}(A-\lambda I)$.
- Similar matrices have the same eigenvalues. A and A^{t} have the same eigenvalues. (Can you prove these things?)
- If A is $n \times n$, and the dimensions of the eigenspaces of A add up to n, then A is diagonalizable (Theorem 7, p.324). That is, there is an invertible matrix P and diagonal matrix D such that $A=P D P^{-1}$.
- If an $n \times n$ matrix has n different eigenvalues, then it is diagonalizable (since every eigenspace has dimension at least 1). However, the converse is not true. The matrix $2 I$ has only one eigenvalue, 2 , but it is diagonal(izable).

Orthogonality and related ideas

- The existence of an inner product (the dot product) on \mathbb{R}^{n} lets us define the notions of orthogonal vectors (where $\vec{x} \cdots \vec{y}=0$) and norm of vectors $\|x\|=\sqrt{\vec{x} \cdot \vec{x}}$. If $\vec{x} \cdot \vec{y}=0$, then $\|\vec{x}+\vec{y}\|^{2}=\|\vec{x}\|^{2}+\|\vec{y}\|^{2}$ (the Pythagorean Theorem in n-dimensions).
- A set S is called orthogonal if \vec{x} and \vec{y} are orthogonal for every pair of distinct vectors $\vec{x}, \vec{y} \in S$. Every orthogonal set is linearly independent.
- We're particularly interested in orthogonal bases and orthonormal bases (where $\|\vec{x}\|=1$ for every basis vector. Note: you can turn an orthogonal basis into an orthonormal basis by dividing every basis vector by its length). To turn an ordinary basis into an orthogonal basis, use Gram-Schmidt (p.402-).
- If W is a subspace of \mathbb{R}^{n}, then we define the orthogonal complement W^{\perp} to be everything in \mathbb{R}^{n} that is orthogonal to everything in W. Given any vector $\vec{y} \in \mathbb{R}^{n}$, it can be written uniquely in the form $\vec{y}=\hat{y}+\vec{z}$, where $\operatorname{Proj}_{W} \vec{y}=\hat{y} \in W$ and $\vec{z} \in W^{\perp}$. This can be calculated via Theorem 8 (p. 395) if you have an orthogonal basis for W.
- The vector \hat{y} from the previous bullet is the closest point in W to \vec{y} (Theorem 9, p.398).
- One use of the previous fact is that it allows us to find \vec{x} that makes $\|A \vec{x}-\vec{b}\|$ as small as possible for a given matrix A and \vec{b}. If $A \vec{x}=\vec{b}$ is consistent, then we just want to solve $A \vec{x}=\vec{b}$. If not, calculate $\operatorname{Proj}_{\mathrm{Col} A} \vec{b}$, and solve $A \vec{x}=\operatorname{Proj}_{\mathrm{Col} A} \vec{b}$ instead (p.414). Alternatively, one can solve the normal equations $A^{T} A \vec{x}=A^{T} \vec{b}$ (p.411).
- Just as we have generalized many notions from \mathbb{R}^{n} to vector spaces in general, we define the notion of inner product on a vector space to be anything that has some of the same properties as the dot product (p. 428 for the list of axioms).
- This allows us to define length and orthogonality in a vector space. However, these concepts depend on the particular inner product chosen. In general, there are infinitely different inner products that can be defined on a single vector space, so there is no "correct" notion of length or orthogonality on a given vector space unless there is a "correct" or "standard" inner product for that vector space (like the dot product for \mathbb{R}^{n}, which gives us the expected notions of length and orthogonality based on our intuition regarding the world around us).
- Given an inner product $\langle\cdot, \cdot\rangle$ on a vector space V, and $\|\vec{x}\|=\sqrt{\langle\vec{x}, \vec{x}\rangle}$, we have the following two inequalities (p432-433):

$$
|\langle\vec{x}, \vec{y}\rangle| \leq\|x\|\|y\|, \quad\|\vec{x}+\vec{y}\| \leq\|\vec{x}\|+\|\vec{y}\| .
$$

Some things you should know how to do

- Determine if a set of vectors in a vector space V is linearly independent (writing vectors as a linear combinations of the ones before, or using coordinates).
- Given two bases for a vector space, find the corresponding change of basis matrix (p. 273 onward).
- Find the eigenvalues of a matrix (p.313)
- Find (orthogonal) bases for the eigenspaces of a matrix
- Determine if a matrix is diagonalizable and if possible, diagonalize it (via the last two steps).
- Gram-Schmidt
- Find least-squares solutions to systems of linear equations
- Compute the projections of vectors onto subspaces.

