
Math 54, Spring 2009, Sections 109 and 112
Midterm 2 Review

This sheet mentions a lot of the major ideas from Chapters 4, 5 and 6. It is inevitably
inexhaustive, but hopefully it can help you notice some areas where you might need to
review some more.

Rn vs. Vector spaces

• In Rn, we had defined operators of scalar multiplication and addition. Inspired by
this, we defined a vector space to be any set of objects that have addition and scalar
multiplication operations that behave like those in Rn, with the full list of axioms given
on p.217.

• We can then define the concepts of subspaces, spanning and linear independence
the same way we did for Rn. Note: if H is a subspace of V , then H is again a vector
space, with the same operations as V .

• Just like with vector spaces, a basis is a linearly independent spanning set. However,
not all vector spaces have finite bases. A vector space with a finite basis is called
finite-dimensional. All bases for a given finite-dimensional vector space have the
same number of elements.

• Any linearly independent set in a vector space can be expanded to a basis by adding
more elements. Any spannig set can be contracted to a basis by removing redundent
elements. To do this, order your spanning set, and keep removing vectors that can be
written as linear combinations of the ones before.

• Informally speaking, any (finite-dimensional) vector space with dimension n looks and
feels like Rn. What is the formal version of this statement? If B is a basis for V , then
the coordinate map [·]B is an invertible linear transformation (isomorphism) between
V and Rn. This isomorphism can be used to prove that V shares many of the same
properties as Rn (p.250-251).

• If B and C are different bases for V , we may be interested in the relationship between
[~x]B and [~x]C. For any pair of bases, there is a unique, invertible matrix P

C←B
such that

P
C←B

[~x]B = [~x]C for all ~x ∈ V (p.273).
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• More generally, if T : V → W is a linear transformation, B is a basis for V , and C is a
basis for W , then there is a unique matrix M such that M [~x]B = [T (~x)]C (p. 329). If
V = W , then M = P

C←B
. Since V and W are just Rn and Rm in disguise, you can think

of M as doing the same thing as T , just on the undisguised versions of V and W .

• If V = W and B = C in the previous bullet point, then the matrix M is called [T ]B,
the B-matrix of T . Note: this is the same notation as coordinates, but this is different;
this does not mean we are taking the coordinates of a matrix. However, we do have
[T (~x)]B = [T ]B[~x]B if T : V → V is a linear transformation.

Eigenvectors and eigenvalues

• An eigenvector/eigenvalue pair for a matrix A is a non-zero vector x and a scalar
λ such that A~x = λ~x. The eigenspace of a matrix A with respect to the eigenvalue
λ is the set of all eigenvectors of A with eigenvalue λ, along with the zero vector.
Alternatively, it is the subspace Nul(A− λI).

• If a matrix is triangular (or diagonal), the eigenvalues are the entries on the diag-
onal. If not, you can find the eigenvalues by finding the roots of the characterisic
polynomial det(A− λI).

• Similar matrices have the same eigenvalues. A and At have the same eigenvalues.
(Can you prove these things?)

• If A is n × n, and the dimensions of the eigenspaces of A add up to n, then A is
diagonalizable (Theorem 7, p.324). That is, there is an invertible matrix P and
diagonal matrix D such that A = PDP−1.

• If an n × n matrix has n different eigenvalues, then it is diagonalizable (since every
eigenspace has dimension at least 1). However, the converse is not true. The matrix
2I has only one eigenvalue, 2, but it is diagonal(izable).

Orthogonality and related ideas

• The existence of an inner product (the dot product) on Rn lets us define the notions
of orthogonal vectors (where ~x · · · ~y = 0) and norm of vectors ‖x‖ =

√
~x · ~x. If

~x · ~y = 0, then ‖~x+ ~y‖2 = ‖~x‖2 + ‖~y‖2 (the Pythagorean Theorem in n-dimensions).
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• A set S is called orthogonal if ~x and ~y are orthogonal for every pair of distinct vectors
~x, ~y ∈ S. Every orthogonal set is linearly independent.

• We’re particularly interested in orthogonal bases and orthonormal bases (where
‖~x‖ = 1 for every basis vector. Note: you can turn an orthogonal basis into an
orthonormal basis by dividing every basis vector by its length). To turn an ordinary
basis into an orthogonal basis, use Gram-Schmidt (p.402-).

• If W is a subspace of Rn, then we define the orthogonal complement W⊥ to be
everything in Rn that is orthogonal to everything in W . Given any vector ~y ∈ Rn, it
can be written uniquely in the form ~y = ŷ + ~z, where ProjW ~y = ŷ ∈ W and ~z ∈ W⊥.
This can be calculated via Theorem 8 (p. 395) if you have an orthogonal basis for W .

• The vector ŷ from the previous bullet is the closest point in W to ~y (Theorem 9,
p.398).

• One use of the previous fact is that it allows us to find ~x that makes
∥∥∥A~x−~b∥∥∥ as small

as possible for a given matrix A and ~b. If A~x = ~b is consistent, then we just want to
solve A~x = ~b. If not, calculate ProjCol A

~b, and solve A~x = ProjCol A
~b instead (p.414).

Alternatively, one can solve the normal equations ATA~x = AT~b (p.411).

• Just as we have generalized many notions from Rn to vector spaces in general, we
define the notion of inner product on a vector space to be anything that has some
of the same properties as the dot product (p.428 for the list of axioms).

• This allows us to define length and orthogonality in a vector space. However, these
concepts depend on the particular inner product chosen. In general, there are infinitely
different inner products that can be defined on a single vector space, so there is no
“correct” notion of length or orthogonality on a given vector space unless there is a
“correct” or “standard” inner product for that vector space (like the dot product for
Rn, which gives us the expected notions of length and orthogonality based on our
intuition regarding the world around us).

• Given an inner product 〈·, ·〉 on a vector space V , and ‖~x‖ =
√
〈~x, ~x〉, we have the

following two inequalities (p432-433):

|〈~x, ~y〉| ≤ ‖x‖ ‖y‖ , ‖~x+ ~y‖ ≤ ‖~x‖+ ‖~y‖ .
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Some things you should know how to do

• Determine if a set of vectors in a vector space V is linearly independent (writing vectors
as a linear combinations of the ones before, or using coordinates).

• Given two bases for a vector space, find the corresponding change of basis matrix
(p.273 onward).

• Find the eigenvalues of a matrix (p.313)

• Find (orthogonal) bases for the eigenspaces of a matrix

• Determine if a matrix is diagonalizable and if possible, diagonalize it (via the last two
steps).

• Gram-Schmidt

• Find least-squares solutions to systems of linear equations

• Compute the projections of vectors onto subspaces.
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