Name: \qquad

Math 54, Spring 2009, Section 112
 Quiz 3 Solutions

[1-(3 pts)] Let V be the vector space \mathbb{P}_{2} of polynomials of degree at most 2 , with bases $\mathcal{B}=\left\{x^{2}-2 x+2, x, x^{2}+2 x-1\right\}$ and $\mathcal{C}=\left\{x^{2}, x^{2}+x, x-1\right\}$. Find the change-of-basis matrices $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ and $\underset{\mathcal{B} \leftarrow \mathcal{C}}{P}$. (Hint: try to write elements of \mathcal{B} in terms of the elements of \mathcal{C}).

By inspection, $\vec{b}_{1}=\vec{c}_{1}-2 \vec{c}_{3}, \vec{b}_{2}=-\vec{c}_{1}+\vec{c}_{2}$, and $\vec{b}_{3}=\vec{c}_{2}+\vec{c}_{3}$. Thus $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}=\left[\begin{array}{ccc}1 & -1 & 0 \\ 0 & 1 & 1 \\ -2 & 0 & 1\end{array}\right]$. We can find $\underset{B \leftarrow C}{P}$ using $\underset{B \leftarrow C}{P}=(\underset{C \leftarrow B}{P})^{-1}$, so row reduce

$$
\left[\begin{array}{cccccc}
1 & -1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 \\
-2 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \sim\left[\begin{array}{cccccc}
1 & 0 & 0 & \frac{1}{3} & \frac{1}{3} & -\frac{1}{3} \\
0 & 1 & 0 & -\frac{2}{3} & \frac{1}{3} & -\frac{1}{3} \\
0 & 0 & 1 & \frac{2}{3} & \frac{2}{3} & \frac{1}{3}
\end{array}\right] .
$$

Thus $\underset{B \leftarrow C}{P}=\left[\begin{array}{ccc}\frac{1}{3} & \frac{1}{3} & -\frac{1}{3} \\ -\frac{2}{3} & \frac{1}{3} & -\frac{1}{3} \\ \frac{2}{3} & \frac{2}{3} & \frac{1}{3}\end{array}\right]$.
[2-(3 pts)] Suppose you solve a non-homogenous system of 8 linear equations in 10 unknowns, and find that in your solution you have exactly 2 free variables. Is it possible to change the right-hand side of the system of equations (i.e. "change \vec{b} ") and have the resulting system be inconsistent? (No points for correct answer with incorrect reasoning.)

This situation corresponds to a matrix equation $A \vec{x}=\vec{b}$, where A is 8×10 and has 2 nonpivot columns (i.e. 2 free variables). Thus A has 8 pivots, and $\operatorname{Rank} A=\operatorname{dim} \operatorname{Col} A=8$. Since $\operatorname{Col} A \subseteq \mathbb{R}^{8}$, this means that $\operatorname{Col} A=\mathbb{R}^{8}$. Thus $A \vec{x}=\vec{c}$ is consistent for evey $\vec{c} \in \mathbb{R}^{8}$.
[3-(3 pts $)$] Let V be a vector space with basis $\mathcal{B}=\left\{\vec{b}_{1}, \ldots, \vec{b}_{n}\right\}$. Prove exactly one of the following two things (if you do both, I'll just grade the first):
(a) If $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ is linearly independent, then so is $\left\{\left[\vec{v}_{1}\right]_{\mathcal{B}}, \ldots,\left[\vec{v}_{k}\right]_{\mathcal{B}}\right\}$.
(b) If $\vec{v} \in \operatorname{Span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$, then $[\vec{v}]_{\mathcal{B}} \in \operatorname{Span}\left\{\left[\vec{v}_{1}\right]_{\mathcal{B}}, \ldots,\left[\vec{v}_{k}\right]_{\mathcal{B}}\right\}$.
(a) Assume that $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ is linearly independent, and that $x_{1}\left[\vec{v}_{1}\right]_{\mathcal{B}}+\cdots+x_{k}\left[\vec{v}_{k}\right]_{\mathcal{B}}=\overrightarrow{0}$. We need to show that $x_{1}=\cdots=x_{k}=0$. Using the linearity of the coordinate transformation, we have $\left[x_{1} \vec{v}_{1}+\cdots+x_{k} \vec{v}_{k}\right]_{\mathcal{B}}=\overrightarrow{0}$. Here we could use the fact that $[\cdot]_{\mathcal{B}}$ is one-to-one, but instead we compute directly from the definition of coordinates that

$$
x_{1} \vec{v}_{1}+\cdots+x_{k} \vec{v}_{k}=0 \vec{b}_{1}+\cdots+0 \vec{b}_{n}=\overrightarrow{0} .
$$

But our original set $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ is linearly independent, so we must have $x_{1}=\cdots=x_{k}=0$, which was to be shown.
(b) If $\vec{v} \in \operatorname{Span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$, then there are weights x_{1}, \ldots, x_{k} such that $\vec{v}=x_{1} \vec{v}_{1}+\cdots+x_{k} \vec{v}_{k}$. Taking coordinates of both sides, and using the fact that the coordinate transformation is linear, we get

$$
\begin{aligned}
{[\vec{v}]_{\mathcal{B}} } & =\left[x_{1} \vec{v}_{1}+\cdots+x_{k} \vec{v}_{k}\right]_{\mathcal{B}} \\
& =x_{1}\left[\vec{v}_{1}\right]_{\mathcal{B}}+\cdots+x_{k}\left[\vec{v}_{k}\right]_{\mathcal{B}} .
\end{aligned}
$$

Thus $[\vec{v}]_{\mathcal{B}} \in \operatorname{Span}\left\{\left[\vec{v}_{1}\right]_{\mathcal{B}}, \ldots,\left[\vec{v}_{k}\right]_{\mathcal{B}}\right\}$.

