Name: \qquad

Math 54, Spring 2009, Section 109 Quiz 4 Solutions

$[\mathbf{1}-(3 \mathrm{pts})]$ Let $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 4 & 3 \\ 0 & 0 & 4\end{array}\right]$. (a) Find the eigenvalues of A, and find bases for the corresponding eigenspaces. (b) Is A diagonalizable?
(a) A is upper triangular, so the eigenvalues are 1 and 4 (or 1,4 and 4 , including multiplicity). The corresponding eigenspaces are $\operatorname{Nul}(A-I)$ and $\operatorname{Nul}(A-4 I)$. We use row reduction to find bases for these subspaces:

$$
[A-I \mid \overrightarrow{0}]=\left[\begin{array}{llll}
0 & 2 & 3 & 0 \\
0 & 3 & 3 & 0 \\
0 & 0 & 3 & 0
\end{array}\right] \sim\left[\begin{array}{llll}
0 & 2 & 3 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \sim\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

Thus x_{1} is free, and $x_{2}=x_{3}=0$. Thus

$$
\operatorname{Nul}(A-I)=\left\{\left[\begin{array}{c}
x_{1} \\
0 \\
0
\end{array}\right]: x_{1} \in \mathbb{R}\right\}=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right\}
$$

is the eigenspace for the eigenvalue 1 . Thus $\{(1,0,0)\}$ is a basis for this space. Similarly,

$$
\left[[A-4 I \mid \overrightarrow{0}]=\left[\begin{array}{cccc}
-3 & 2 & 3 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & -2 / 3 & -1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & -2 / 3 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \sim\right.
$$

Thus we get $x_{3}=0, x_{2}$ is free, and $x_{1}=\frac{2}{3} x_{2}$. So

$$
\operatorname{Nul}(A-4 I)=\left\{\left[\begin{array}{c}
\frac{2}{3} x_{2} \\
x_{2} \\
0
\end{array}\right]: x_{2} \in \mathbb{R}\right\}=\operatorname{Span}\left\{\left[\begin{array}{l}
\frac{2}{3} \\
1 \\
0
\end{array}\right]\right\},
$$

so the eigenspace for the eigenvalue 4 has basis $\left\{\left(\frac{2}{3}, 1,0\right)\right\}$. Another choice would be $\{(2,3,0)\}$.
(b) A is a 3×3 matrix, with two eigenspaces. Each eigenspace has dimension 1 , so the sum of the dimensions of the eigenspaces is less than the size of the matrix. Thus A is not diagonalizable by Theorem 7 on p. 324 .
[2-(3 pts)] Let A be an $n \times n$ matrix, and let $\vec{x} \in \mathbb{R}^{n}$ be an eigenvector of A with eigenvalue λ. Suppose also that \vec{x} is orthogonal to $A \vec{x}$. What can you say about λ ? What does this say about A ?

We have $0=A \vec{x} \cdot x=(\lambda \vec{x}) \cdot \vec{x}=\lambda(\vec{x} \cdot \vec{x})$. Because eigenvectors cannot be $\overrightarrow{0}$ by definition, we must have $\vec{x} \cdot \vec{x} \neq 0$. Therefore $\lambda=0$, which means that A is not invertible.
[3-(3 pts)] Let $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{cc}\pi & 0 \\ 0 & \sqrt{2}\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]^{-1}$. Find two distinct eigenvectors of A that both have eigenvalue π (the two vectors do not need to form a linearly independent set).

We have written $A=P D P^{-1}$, so an eigenvector corresponding to π (the first entry on the diagonal of D) is $P \vec{e}_{1}$, the first column of P. Why is that? We have $D \vec{e}_{1}=\pi \vec{e}_{1}$, so

$$
A\left(P \vec{e}_{1}\right)=P D P^{-1} P \vec{e}_{1}=P D \vec{e}_{1}=P \pi \vec{e}_{1}=\pi P \vec{e}_{1}
$$

Thus $P \vec{e}_{1}=(1,3)$ is an eigenvector of A, with eigenvalue π. Since the eigenvectors of a matrix form a subspace, $2(1,3)=(2,6)$ is another one. Since the eigenvalue π has multiplicity one in this case, the eigenspace corresponding to π is one-dimensional, so the non-zero multiples of $(1,3)$ are the only possible answers.

