Name: \qquad

Math 54, Spring 2009, Section 112 Quiz 5 Solutions

[1-(5 pts)] a) Find the general solution of the differential equation $y^{\prime \prime}-y^{\prime}-2 y=t^{2}-e^{-t}$. b) Find the solution of the ODE from part (a) with initial values $y(0)=\frac{1}{4}$ and $y^{\prime}(0)=-\frac{5}{12}$.
(a) The auxiliary equation is $0=r^{2}-r-2=(r-2)(r+1)$, so the general solution to the homogenous equation $y^{\prime \prime}-y^{\prime}-2 y=0$ is $y_{h}=c_{1} e^{2 t}+c_{2} e^{-t}$. We now try to solve $y^{\prime \prime}-y^{\prime}-2 y=t^{2}$ by guessing $y_{p_{1}}=A t^{2}+B t+C$ (no extra factor of t, because 0 is not a root of the auxiliary equation). Plugging it in, we get
$t^{2}=y_{p_{1}}^{\prime \prime}-y_{p_{1}}^{\prime}-2 y_{p_{1}}=-2 A-2 A t-B-2 A t^{2}-2 B t-2 C=-2 A t^{2}-2(A+B) t+2 A-B-2 C$.
Solving gives $A=-\frac{1}{2}, B=\frac{1}{2}$, and $C=-\frac{3}{4}$. Next we guess a solution $y_{p_{2}}$ to $y^{\prime \prime}-y^{\prime}-2 y=$ $-e^{-t}$. Since -1 is a (single) root of the auxiliary equation, we multiply our normal guess by t to get $y_{p_{2}}=D t e^{-t}$. Plugging it in,

$$
-e^{-t}=y_{p_{2}}^{\prime \prime}-y_{p_{2}}^{\prime}-2 y_{p_{2}}=D(t-2) e^{-t}+D(t-1) e^{-t}-2 D t e^{-t}=-3 D e^{-t}
$$

so $D=\frac{1}{3}$. Thus the general solution to the ODE is

$$
y=y_{h}+y_{p_{1}}+y_{p_{2}}=c_{1} e^{2 t}+c_{2} e^{-t}-\frac{1}{2} t^{2}+\frac{1}{2} t-\frac{3}{4}+\frac{1}{3} t e^{-t} .
$$

(b) Plugging in the initial values gives $\frac{1}{4}=y(0)=c_{1}+c_{2}-\frac{3}{4}$, and $-\frac{5}{12}=y^{\prime}(0)=-c_{1}+$ $2 c_{2}+\frac{1}{2}+\frac{1}{3}$, which gives the system of equations $c_{1}+c_{2}=1$ and $2 c_{1}-c_{2}=-\frac{15}{12}$. Solving gives $c_{1}=-\frac{1}{12}$ and $c_{2}=\frac{13}{12}$, so the solution to the initial value problem is

$$
y(t)=-\frac{1}{12} e^{2 t}+\frac{13}{12} e^{-t}-\frac{1}{2} t^{2}+\frac{1}{2} t-\frac{3}{4}+\frac{1}{3} t e^{-t} .
$$

[2-(4 pts)] Let $L[y]$ be a linear differential operator, and consider the ODE $L[y]=g(x)$. Suppose that y_{1} and y_{2} are solutions of this ODE on the whole line $(-\infty, \infty)$. Show that if $y_{1}+y_{2}$ is also a solution on the whole line, then the equation is homogenous (i.e. $g(x)=0$ for all x).

If y_{1}, y_{2} and $y_{1}+y_{2}$ are all solutions to the linear ODE $L[y]=g(x)$, we have $g(x)=L\left[y_{1}+y_{2}\right]=$ $L\left[y_{1}\right]+L\left[y_{2}\right]=g(x)+g(x)$. Subtracting a $g(x)$ from both sides gives $g(x)=0$ for all x.

