Name: \qquad

Math 54, Spring 2009, Section 109 Quiz 6

[1-(5 pts)] Solve the initial value problem

$$
\begin{gathered}
y^{\prime \prime \prime}-y^{\prime \prime}-4 y^{\prime}+4 y=0 \\
y(0)=-4, \quad y^{\prime}(0)=-1, \quad y^{\prime \prime}(0)=-19
\end{gathered}
$$

The auxiliary equation is $r^{3}-r^{2}-4 r+4=0$. By inspection, we can see that $r=1$ is a root. Using polynomial long division (or more guess and check), we get $r^{3}-r^{2}-4 r+4=$ $(r-1)(r-2)(r+2)$. So the general solution of this equation is

$$
y(t)=c_{1} e^{t}+c_{2} e^{2 t}+c_{3} e^{-2 t} .
$$

Plugging in the initial conditions gives

$$
\begin{aligned}
-4 & =y(0)=c_{1}+c_{2}+c_{3} \\
-1 & =y^{\prime}(0)=c_{1}+2 c_{2}-2 c_{3} \\
-19 & =y^{\prime \prime}(0)=c_{1}+4 c_{2}+4 c_{3}
\end{aligned}
$$

To solve this system, we row reduce

$$
\left[\begin{array}{cccc}
1 & 1 & 1 & -4 \\
1 & 2 & -2 & -1 \\
1 & 4 & 4 & -19
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & -3 \\
0 & 0 & 1 & -2
\end{array}\right] .
$$

So $c_{1}=1, c_{2}=-3$ and $c_{3}=-2$, which yields the solution

$$
y(t)=e^{t}-3 e^{2 t}-2 e^{-2 t}
$$

[2-(2 pts)] Write the following system of equations as a matrix system in normal form

$$
\begin{aligned}
& x^{\prime}(t)-\sin (t) x(t)+e^{t} y(t)=0 \\
& y^{\prime}(t)-\cos (t) x(t)+\left(a+b t^{3}\right) y(t)=0 .
\end{aligned}
$$

Rearranging, we get the system

$$
\begin{aligned}
& x^{\prime}(t)=\sin (t) x(t)-e^{t} y(t) \\
& y^{\prime}(t)=\cos (t) x(t)-\left(a+b t^{3}\right) y(t)
\end{aligned}
$$

That is,

$$
\left[\begin{array}{l}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{c}
\sin (t) x(t)-e^{t} y(t) \\
\cos (t) x(t)-\left(a+b t^{3}\right) y(t)
\end{array}\right]=x(t)\left[\begin{array}{l}
\sin (t) \\
\cos (t)
\end{array}\right]+y(t)\left[\begin{array}{c}
-e^{t} \\
-\left(a+b t^{3}\right.
\end{array}\right]=\left[\begin{array}{cc}
\sin (t) & -e^{t} \\
\cos (t) & -a-b t^{3}
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right] .
$$

So we get the system

$$
\vec{w}^{\prime}(t)=\left[\begin{array}{cc}
\sin (t) & -e^{t} \\
\cos (t) & -a-b t^{3}
\end{array}\right] \vec{w}(t) .
$$

[3-(2 pts)] Express the given higher-order differential equation as a matrix system in normal form

$$
m y^{\prime \prime}(t)+b y^{\prime}(t)+k y(t)=0
$$

where $m, b, k \in \mathbb{R}$ are constants.

This is equivalent to the system

$$
\begin{aligned}
y^{\prime} & =v \\
v^{\prime} & =-\frac{k}{m} y-\frac{b}{m} v,
\end{aligned}
$$

which leads to the normal form

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{cc}
0 & 1 \\
-\frac{k}{m} & -\frac{b}{m}
\end{array}\right] \vec{x}(t) .
$$

