Math 54, Spring 2009, Sections 109 and 112
 Worksheet 1: Lay 1.1-1.4

(1) Which of the following matrices are in an echelon form? Reduced echelon form? If the matrix is in an echelon form, identify the pivots.
(a) $\left(\begin{array}{llll}1 & 0 & 1 & 4 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$
(b) $\left(\begin{array}{cccc}2 & 2 & 1 & -2 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1\end{array}\right)$
(c) $\left(\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$
(2) (a) Does the following matrix equation have a solution?

$$
\left(\begin{array}{ccc}
1 & 2 & 3 \\
4 & 2 & -4 \\
1 & 1 & 1
\end{array}\right) \vec{x}=\left[\begin{array}{l}
4 \\
0 \\
2
\end{array}\right]
$$

(b) Is $(4,0,2)$ in $\operatorname{Span}\{(1,4,1),(2,2,1),(3,-4,1)\}$? (Recall that for convenience we sometimes write vectors horizontally).
(3) Consider the set of vectors

$$
S=\left\{\left[\begin{array}{c}
2 x_{2}-x_{1} \\
\pi x_{3}+\sqrt{2} x_{1}-x_{2} \\
x_{1}+x_{2}+x_{3}
\end{array}\right]: x_{1}, x_{2}, x_{3} \in \mathbb{R}\right\} .
$$

Can you write S as the span of a collection of vectors?
(4) Suppose $\vec{v}_{1}, \ldots, \vec{v}_{p}$ are vectors in \mathbb{R}^{n} and let $V=\operatorname{Span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$. Prove that if $\vec{x} \in V$ and $\vec{y} \in V$, then $\vec{x}+\vec{y} \in V$ as well.

