Math 54, Spring 2009, Sections 109 and 112
 Worksheet 2 (Lay 1.7-1.8)

(1) Classify the following sets as linearly independent or linearly dependent. (Hint: no calculations needed).
(a) $\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right]\right\}$.
(b) $\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}3 \\ 4\end{array}\right],\left[\begin{array}{l}5 \\ 6\end{array}\right]\right\}$.
(c) $\left\{\left[\begin{array}{c}1 \\ -2 \\ 3 \\ -4\end{array}\right],\left[\begin{array}{c}-3 \\ -6 \\ 9 \\ -12\end{array}\right]\right\}$.
(2) True/False: If it's true, give a justification. If it's false, give a counterexample.
(a) If $\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ is a linearly independent set of vectors, and A is a matrix, then $\left\{A \vec{v}_{1}, \ldots, A \vec{v}_{p}\right\}$ is also linearly independent.
(b) If \vec{b} is in the span of the columns of A, then $A \vec{x}=\vec{b}$ is consistent.
(3) (\#39 from p.72) Suppose A is a $m \times n$ matrix with the property that for all \vec{b} in \mathbb{R}^{m} the equation $A \vec{x}=\vec{b}$ has at most one solution. Explain why the columns of A are linearly independent.
(4) Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation, and let $\left\{\vec{v}_{1}, \ldots \vec{v}_{p}\right\}$ be a linearly dependent set in \mathbb{R}^{n}. Assume that $T\left(\vec{v}_{i}\right) \neq T\left(\vec{v}_{j}\right)$ when $i \neq j$. Show that $\left\{T\left(\vec{v}_{1}\right), \ldots, T\left(\vec{v}_{p}\right)\right\}$ is linearly dependent in \mathbb{R}^{m}. (Compare to 2a).

