Math 54, Spring 2009, Sections 109 and 112
 Worksheet 2 (Lay 1.7-1.8) Solutions

(1) Classify the following sets as linearly independent or linearly dependent. (Hint: no calculations needed).
(a) $\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right]\right\}$ - Linearly dependent, because it contains $\overrightarrow{0}$ (Theorem 9, p.69).
(b) $\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}3 \\ 4\end{array}\right],\left[\begin{array}{l}5 \\ 6\end{array}\right]\right\}$ - Linearly dependent, because you have more vectors than entries in each vector (Theorem 8, p.69).
(c) $\left\{\left[\begin{array}{c}1 \\ -2 \\ 3 \\ -4\end{array}\right],\left[\begin{array}{c}-3 \\ -6 \\ 9 \\ -12\end{array}\right]\right\}$ - Linearly independent, because we have a two element set with neither vector a multiple of the other (bottom p.67)
(2) True/False: If it's true, give a justification. If it's false, give a counterexample.
(a) If $\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ is a linearly independent set of vectors, and A is a matrix, then $\left\{A \vec{v}_{1}, \ldots, A \vec{v}_{p}\right\}$ is also linearly independent.

False.

$$
A=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right), \quad v_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

Note: there are certainly smaller counterexamples.
(b) If \vec{b} is in the span of the columns of A, then $A \vec{x}=\vec{b}$ is consistent.

True. See pages 42-43.
(3) (\#39 from p.72) Suppose A is a $m \times n$ matrix with the property that for all \vec{b} in \mathbb{R}^{m} the equation $A \vec{x}=\vec{b}$ has at most one solution. Explain why the columns of A are linearly independent.

In particular, we can consider when $\vec{b}=\overrightarrow{0}$. In this case, by our assumption we know that $A \vec{x}=\overrightarrow{0}$ has at most one solution. But we already know that there is at least one solution to $A \vec{x}=\overrightarrow{0}$, namely the trivial solution. So our assumption means that $A \vec{x}=\overrightarrow{0}$ must have only the trivial solution. Thus the columns of A are linearly independent (see bottom p. 66).
(4) Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation, and let $\left\{\vec{v}_{1}, \ldots \vec{v}_{p}\right\}$ be a linearly dependent set in \mathbb{R}^{n}. Assume that $T\left(\vec{v}_{i}\right) \neq T\left(\vec{v}_{j}\right)$ when $i \neq j$. Show that $\left\{T\left(\vec{v}_{1}\right), \ldots, T\left(\vec{v}_{p}\right)\right\}$ is linearly dependent in \mathbb{R}^{m}. (Compare to 2 a).

Since $\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ is linearly dependent, there exist scalars x_{1}, \ldots, x_{p} such that

$$
x_{1} \vec{v}_{1}+\cdots+x_{p} \vec{v}_{p}=\overrightarrow{0},
$$

where not all of the x_{j} are 0 . Then, by the linearity of T, we have

$$
\begin{aligned}
\overrightarrow{0} & =T(\overrightarrow{0}) \quad(\text { See (3) on } p .77) \\
& =T\left(x_{1} \vec{v}_{1}+\cdots x_{p} \vec{v}_{p}\right) \\
& \left.=x_{1} T\left(\vec{v}_{1}\right)+\cdots x_{p} T\left(\vec{v}_{p}\right) \quad \text { (By linearity of } T .\right)
\end{aligned}
$$

By the definition of linear dependence, this means that $\left\{T\left(\vec{v}_{1}\right), \ldots, T\left(\vec{v}_{p}\right)\right\}$ is linearly dependent, which is what we were trying to show.

