Math 54, Spring 2009, Sections 109 and 112 Worksheet 3 (Lay 2.8-2.9)

(1) True or False? If true, justify. If false, give a counterexample.
(a) A set of 3 vectors in \mathbb{R}^{4} must be linearly independent.
(b) A set of 3 vectors in \mathbb{R}^{4} cannot span \mathbb{R}^{4}.
(c) A set of 5 vectors in \mathbb{R}^{4} must be linearly dependent.
(d) A set of 5 vectors in \mathbb{R}^{4} must span \mathbb{R}^{4}.
(2) Let $H \subseteq \mathbb{R}^{n}$ be a subspace. What is the definition of a basis for H ? What is the definition of the dimension of H ?
(3) Let $A=\left[\begin{array}{ccc}2 & 1 & 3 \\ 1 & -2 & 4 \\ 1 & 4 & -2\end{array}\right]$. Find a basis for $\operatorname{Col} A$. What is $\operatorname{dim} \operatorname{Col} A$? What is $\operatorname{dim} \operatorname{Nul} A$?
(Hint: you don't need to do any extra work to answer the last part.)
(4) Let $v_{1}=\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right], v_{2}=\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right]$ and let $H=\operatorname{Span}\left\{v_{1}, v_{2}\right\} \subseteq \mathbb{R}^{3}$. Find the coordinates of $\left[\begin{array}{c}1 \\ 2 \\ -3\end{array}\right]$ with respect to the basis $\mathfrak{B}=\left\{v_{1}, v_{2}\right\}$ for H.

