Math 54, Spring 2009, Sections 109 and 112 Worksheet 4 (Lay 4.1-4.3)

(1) Let V be the vector space of continuous functions from \mathbb{R} to \mathbb{R}. Is the set $\left\{\sin x, \cos x, e^{x}\right\}$ linearly independent? Find a basis for $\operatorname{Span}\left\{\sin x, \cos x, e^{x}\right\}$.
(2) True or False? If true, justify. If false, give a counterexample. In these statements, V is a vector space, and H is a subspace of V.
(a) If $\vec{u} \in H$ and $\vec{v} \in H$, then $\operatorname{Span}\{\vec{u}, \vec{v}\} \subseteq H$.
(b) A basis for \mathbb{P}_{n} (polynomials of degree at most n) has n elements.
(c) If a finite set S of non-zero vectors spans V, then some subset of S is a basis for V.
(d) A linear transformation is one-to-one if and only if $\operatorname{Kernel}(T)=\{0\}$.
(3) Let $M_{n \times m}(\mathbb{R})$ be the vector space of $n \times m$ matrices. Define $T: M_{2 \times 3}(\mathbb{R}) \rightarrow M_{2 \times 3}(\mathbb{R})$ by $T(A)=A B$, where $B=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 0 & 6 \\ 0 & 4 & 5\end{array}\right]$ is fixed. Show that T is one-to-one and onto (i.e. find $\operatorname{Range}(T)$ and $\operatorname{Kernel}(T))$.
(4) Let V be the vector space of continuous functions from \mathbb{R} to \mathbb{R} that also have a continuous derivative, and let W be the vector space of continuous functions from \mathbb{R} to \mathbb{R}. Define $T: V \rightarrow W$ by $T(f)=f^{\prime}$. Justify why V and W are vector spaces, and why T is a linear transformation. What is $\operatorname{ker} T$? Bonus: use calculus to show that T is onto.

