
Math 54, Spring 2009, Sections 109 and 112
Worksheet 4 (Lay 4.1-4.3)

Solutions

(1) Let V be the vector space of continuous functions from R to R. Is the set {sinx, cosx, ex}
linearly independent? Find a basis for Span{sinx, cosx, ex}.

We need to check if any of the elements is a linear combination of the ones before it. If
cosx = c1 sinx, then by plugging in x = 0 we would have 0 = 1, a contradiction. So cos x
is not a multiple of sin x. Now suppose ex = c1 cosx + c2 sinx. Then plugging in 0 and 2π
we get 1 = c1 and e2π = c1. These can’t both be possible, so ex is not a linear combina-
tion of cos and sin. Thus the set is linearly independent, and {sinx, cosx, ex} is a basis for
Span{sinx, cosx, ex}.

(2) True or False? If true, justify. If false, give a counterexample. In these statements, V is
a vector space, and H is a subspace of V .

(a) If ~u ∈ H and ~v ∈ H, then Span{~u,~v} ⊆ H.

(b) Some basis for Pn (polynomials of degree at most n) has n elements.

(c) If a finite set S of non-zero vectors spans V , then some subset of S is a basis for V .

(d) A linear transformation is one-to-one if and only if Kernel(T ) = {0}.

(a) True. If ~u ∈ H and ~v ∈ H, then c1~u+ c2~v ∈ H for any scalars c1, c2 (by the definition of
subspace). So H contains every linear combination of ~u and ~v, so Span{~u,~v} ⊆ H.

(b) False. One basis for Pn is {1, t, t2, . . . , tn}, which has n + 1 elements. All bases for a
given space have the same number of elements, so no basis for Pn has n elements.

(c) True. See the Spanning Set Theorem, p.239.
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(d) True. We’ve seen the analagous statement for matrices, that A~x = ~b has at most one

solution for each ~b if and only if NulA = {~0}. To prove the statement, we need to prove
both directions. First assume that T is one-to-one. That is, assume that if T (~x) = T (~y),
then ~x = ~y (so that no two different inputs can be sent to the same output). Now suppose
that x ∈ KerT . Then T (~x) = ~0 = T (~0). Since T is one-to-one, this means that ~x = ~0. This
means that any arbitrary element of KerT must be the zero vector, so KerT = {~0}.

Conversely, suppose that KerT = {~0}, and that T (~x) = T (~y). We would like to show that
~x = ~y (so that T would be one-to-one). Subtracting T (~y) from both sides, and using the
linearity of T , we get T (~x− ~y) = ~0. So ~x− ~y ∈ KerT by the definition of KerT . But KerT
contains only the zero vector, so ~x− ~y = ~0. Thus ~x = ~y, which completes the proof that T
is one-to-one.

(3) Let Mn×m(R) be the vector space of n ×m matrices. Define T : M2×3(R) → M2×3(R)

by T (A) = AB, where B =

1 2 3
0 0 6
0 4 5

 is fixed. Show that T is one-to-one and onto (i.e.

find Range(T ) and Kernel(T )).

Note that T is not a linear transformation from Rn → Rm, so we cannot find its standard
matrix. To show that T is one-to-one and onto, we must show that KerT = {0} and that
Range(T ) = M2×3(R). If T (A) = 0, then AB = 0. Since det(B) = −20, B is invertible.
Multiple both sides of the previous equality on the right by B−1 to get A = 0. Thus if
T (A) = 0, then we must have A = 0. So KerT = {0} and T is one-to-one.

Now we want to show that given any C ∈M2×3(R), there is some input that will have C as
an output (i.e. that T is onto). We’d like T (A) = C, or in other words AB = C. For that
to happen, we’d need A = CB−1. Let’s try it: T (CB−1) = CBB−1 = C. So C ∈ Ran(T ).
Since C was arbitrary, Ran(T ) = M2×3(R) and T is onto.

(4) Let V be the vector space of continuous functions from R to R that also have a contin-
uous derivative, and let W be the vector space of continuous functions from R to R. Define
T : V → W by T (f) = f ′. Justify why V and W are vector spaces, and why T is a linear
transformation. What is KerT? Bonus: use calculus to show that T is onto.
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Both V and W are subsets of the vector space of all functions from R→ R, so we just need
to explain why they are subspaces. The function f(x) = 0 is continuous and differentiable,
so both V and W have the zero vector. The sum of continuous functions is continuous and
any scalar multiple of a continuous functions is continuous, so W is a subspace. Also, if f
and g are differentiable, so is f + g, with (f + g)′ = f ′ + g′. Also, so is cf , with (cf)′ = cf ′.
The last two statements justify why V is a vector space, and why T is linear.

To find KerT , suppose that T (f) = ~0. That is, f ′ = 0. If the deriviative of a function is
the constant zero function, then f must be constant. So KerT is the set of all constant
functions.

To show that T is onto, fix a continuous function f ∈ W . We need to show that there is some
input that yields f . That is, we need some F ∈ V such that F ′ = f . Let F (x) =

∫ x

0
f(t)dt.

By the Fundamental Theorem of Calculus, F ∈ V (i.e. F is differentiable) and F ′ = f . So
T (F ) = f , and since f was arbitrary, T is onto.
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