Math 54, Spring 2009, Sections 109 and 112
 Worksheet 4 (Lay 4.1-4.3)

 Solutions

 Solutions}
(1) Let V be the vector space of continuous functions from \mathbb{R} to \mathbb{R}. Is the $\operatorname{set}\left\{\sin x, \cos x, e^{x}\right\}$ linearly independent? Find a basis for $\operatorname{Span}\left\{\sin x, \cos x, e^{x}\right\}$.

We need to check if any of the elements is a linear combination of the ones before it. If $\cos x=c_{1} \sin x$, then by plugging in $x=0$ we would have $0=1$, a contradiction. So $\cos x$ is not a multiple of $\sin x$. Now suppose $e^{x}=c_{1} \cos x+c_{2} \sin x$. Then plugging in 0 and 2π we get $1=c_{1}$ and $e^{2 \pi}=c_{1}$. These can't both be possible, so e^{x} is not a linear combination of \cos and \sin. Thus the set is linearly independent, and $\left\{\sin x, \cos x, e^{x}\right\}$ is a basis for $\operatorname{Span}\left\{\sin x, \cos x, e^{x}\right\}$.
(2) True or False? If true, justify. If false, give a counterexample. In these statements, V is a vector space, and H is a subspace of V.
(a) If $\vec{u} \in H$ and $\vec{v} \in H$, then $\operatorname{Span}\{\vec{u}, \vec{v}\} \subseteq H$.
(b) Some basis for \mathbb{P}_{n} (polynomials of degree at most n) has n elements.
(c) If a finite set S of non-zero vectors spans V, then some subset of S is a basis for V.
(d) A linear transformation is one-to-one if and only if $\operatorname{Kernel}(T)=\{0\}$.
(a) True. If $\vec{u} \in H$ and $\vec{v} \in H$, then $c_{1} \vec{u}+c_{2} \vec{v} \in H$ for any scalars c_{1}, c_{2} (by the definition of subspace). So H contains every linear combination of \vec{u} and \vec{v}, so $\operatorname{Span}\{\vec{u}, \vec{v}\} \subseteq H$.
(b) False. One basis for \mathbb{P}_{n} is $\left\{1, t, t^{2}, \ldots, t^{n}\right\}$, which has $n+1$ elements. All bases for a given space have the same number of elements, so no basis for \mathbb{P}_{n} has n elements.
(c) True. See the Spanning Set Theorem, p.239.
(d) True. We've seen the analagous statement for matrices, that $A \vec{x}=\vec{b}$ has at most one solution for each \vec{b} if and only if $\operatorname{Nul} A=\{\overrightarrow{0}\}$. To prove the statement, we need to prove both directions. First assume that T is one-to-one. That is, assume that if $T(\vec{x})=T(\vec{y})$, then $\vec{x}=\vec{y}$ (so that no two different inputs can be sent to the same output). Now suppose that $x \in \operatorname{Ker} T$. Then $T(\vec{x})=\overrightarrow{0}=T(\overrightarrow{0})$. Since T is one-to-one, this means that $\vec{x}=\overrightarrow{0}$. This means that any arbitrary element of $\operatorname{Ker} T$ must be the zero vector, so $\operatorname{Ker} T=\{\overrightarrow{0}\}$.

Conversely, suppose that $\operatorname{Ker} T=\{\overrightarrow{0}\}$, and that $T(\vec{x})=T(\vec{y})$. We would like to show that $\vec{x}=\vec{y}$ (so that T would be one-to-one). Subtracting $T(\vec{y})$ from both sides, and using the linearity of T, we get $T(\vec{x}-\vec{y})=\overrightarrow{0}$. So $\vec{x}-\vec{y} \in \operatorname{Ker} T$ by the definition of $\operatorname{Ker} T$. But $\operatorname{Ker} T$ contains only the zero vector, so $\vec{x}-\vec{y}=\overrightarrow{0}$. Thus $\vec{x}=\vec{y}$, which completes the proof that T is one-to-one.
(3) Let $M_{n \times m}(\mathbb{R})$ be the vector space of $n \times m$ matrices. Define $T: M_{2 \times 3}(\mathbb{R}) \rightarrow M_{2 \times 3}(\mathbb{R})$ by $T(A)=A B$, where $B=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 0 & 6 \\ 0 & 4 & 5\end{array}\right]$ is fixed. Show that T is one-to-one and onto (i.e. find $\operatorname{Range}(T)$ and $\operatorname{Kernel}(T))$.

Note that T is not a linear transformation from $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, so we cannot find its standard matrix. To show that T is one-to-one and onto, we must show that $\operatorname{Ker} T=\{0\}$ and that $\operatorname{Range}(T)=M_{2 \times 3}(\mathbb{R})$. If $T(A)=0$, then $A B=0$. Since $\operatorname{det}(B)=-20, B$ is invertible. Multiple both sides of the previous equality on the right by B^{-1} to get $A=0$. Thus if $T(A)=0$, then we must have $A=0$. So $\operatorname{Ker} T=\{0\}$ and T is one-to-one.

Now we want to show that given any $C \in M_{2 \times 3}(\mathbb{R})$, there is some input that will have C as an output (i.e. that T is onto). We'd like $T(A)=C$, or in other words $A B=C$. For that to happen, we'd need $A=C B^{-1}$. Let's try it: $T\left(C B^{-1}\right)=C B B^{-1}=C$. So $C \in \operatorname{Ran}(T)$. Since C was arbitrary, $\operatorname{Ran}(T)=M_{2 \times 3}(\mathbb{R})$ and T is onto.
(4) Let V be the vector space of continuous functions from \mathbb{R} to \mathbb{R} that also have a continuous derivative, and let W be the vector space of continuous functions from \mathbb{R} to \mathbb{R}. Define $T: V \rightarrow W$ by $T(f)=f^{\prime}$. Justify why V and W are vector spaces, and why T is a linear transformation. What is Ker T ? Bonus: use calculus to show that T is onto.

Both V and W are subsets of the vector space of all functions from $\mathbb{R} \rightarrow \mathbb{R}$, so we just need to explain why they are subspaces. The function $f(x)=0$ is continuous and differentiable, so both V and W have the zero vector. The sum of continuous functions is continuous and any scalar multiple of a continuous functions is continuous, so W is a subspace. Also, if f and g are differentiable, so is $f+g$, with $(f+g)^{\prime}=f^{\prime}+g^{\prime}$. Also, so is $c f$, with $(c f)^{\prime}=c f^{\prime}$. The last two statements justify why V is a vector space, and why T is linear.

To find Ker T, suppose that $T(f)=\overrightarrow{0}$. That is, $f^{\prime}=0$. If the deriviative of a function is the constant zero function, then f must be constant. So $\operatorname{Ker} T$ is the set of all constant functions.

To show that T is onto, fix a continuous function $f \in W$. We need to show that there is some input that yields f. That is, we need some $F \in V$ such that $F^{\prime}=f$. Let $F(x)=\int_{0}^{x} f(t) d t$. By the Fundamental Theorem of Calculus, $F \in V$ (i.e. F is differentiable) and $F^{\prime}=f$. So $T(F)=f$, and since f was arbitrary, T is onto.

