# Math 54, Spring 2009, Sections 109 and 112 Worksheet 5 (Lay 4.5-4.7) 

(1) (p.276, \#6) Let $\mathcal{D}=\left\{\vec{d}_{1}, \vec{d}_{2}, \vec{d}_{3}\right\}$ and $\mathcal{F}=\left\{\vec{f}_{1}, \vec{f}_{2}, \overrightarrow{f_{3}}\right\}$ be bases for a vector space $V$, and suppose $\vec{f}_{1}=2 \vec{d}_{1}-\vec{d}_{2}+\vec{d}_{3}, \vec{f}_{2}=3 \vec{d}_{2}+\vec{d}_{3}$, and $\vec{f}_{3}=-3 \vec{d}_{1}+2 \vec{d}_{3}$. Find the change-of-coordinate matrix from $\mathcal{F}$ to $\mathcal{D}$. Find $[\vec{x}]_{\mathcal{D}}$ for $\vec{x}=\vec{f}_{1}-2 \vec{f}_{2}+2 \vec{f}_{3}$.
(2) True or False? If true, justify. If false, give a counterexample.
(a) If $\mathcal{B}$ and $\mathcal{C}$ are different bases for $V$, then $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ can be singular.
(b) Let $H$ be a subspace of a finite-dimensional vectors space $V$, and let $\mathcal{B}=\left\{b_{1}, \ldots, b_{r}\right\}$ be a basis for $V$. Then $H=V$ if and only if $\mathcal{B} \subset H$.
(c) If $P$ is an invertible $n \times n$ matrix, then there are bases $\mathcal{B}$ and $\mathcal{C}$ for $\mathbb{R}^{n}$ such that $P=\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$.
(3) Let $A$ be an $n \times n$ matrix, and let $\mathcal{B}=\left\{\vec{b}_{1}, \ldots, \vec{b}_{n}\right\}$ be a basis for $\mathbb{R}^{n}$. Find a formula for the matrix $C$ such that $C[\vec{x}]_{\mathcal{B}}=[A \vec{x}]_{\mathcal{B}}$.
(4) (p. 299, \# 9) Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. What are the dimensions of the range and kernel of $T$ if $T$ is one-to-one? What about if $T$ is onto?

