Math 54, Spring 2009, Sections 109 and 112
 Worksheet 5 (Lay 4.4-4.7)
 Solutions

(1) (p.276, \#6) Let $\mathcal{D}=\left\{\vec{d}_{1}, \vec{d}_{2}, \vec{d}_{3}\right\}$ and $\mathcal{F}=\left\{\vec{f}_{1}, \vec{f}_{2}, \vec{f}_{3}\right\}$ be bases for a vector space V, and suppose $\vec{f}_{1}=2 \vec{d}_{1}-\vec{d}_{2}+\vec{d}_{3}, \vec{f}_{2}=3 \vec{d}_{2}+\vec{d}_{3}$, and $\vec{f}_{3}=-3 \vec{d}_{1}+2 \vec{d}_{3}$. Find the change-of-coordinate matrix from \mathcal{F} to \mathcal{D}. Find $[\vec{x}]_{\mathcal{D}}$ for $\vec{x}=\overrightarrow{f_{1}}-2 \overrightarrow{f_{2}}+2 \overrightarrow{f_{3}}$.

By inspection, $\left[\vec{f}_{1}\right]_{\mathcal{D}}=(2,-1,1),\left[\vec{f}_{2}\right]_{\mathcal{D}}=(0,3,1)$ and $\left[\vec{f}_{3}\right]_{\mathcal{D}}=(-3,0,2)$. So by Theorem 15 (p.273), we have

$$
\underset{\mathcal{D} \leftarrow \mathcal{F}}{P}=\left[\begin{array}{lll}
{\left[\vec{f}_{1}\right]_{\mathcal{D}}} & {\left[\begin{array}{l}
\vec{f}_{2}
\end{array}\right]_{\mathcal{D}}} & {\left[\vec{f}_{3}\right]_{\mathcal{D}}}
\end{array}\right]=\left[\begin{array}{ccc}
2 & 0 & -3 \\
-1 & 3 & 0 \\
1 & 1 & 2
\end{array}\right] .
$$

For $\vec{x}=\vec{f}_{1}-2 \overrightarrow{f_{2}}+2 \overrightarrow{f_{3}}$, we have $[\vec{x}]_{\mathcal{F}}=(1,-2,2)$, so

$$
[\vec{x}]_{\mathcal{D}}=\underset{\mathcal{D} \leftarrow \mathcal{F}}{P}[\vec{x}]_{\mathcal{F}}=\left[\begin{array}{ccc}
2 & 0 & -3 \\
-1 & 3 & 0 \\
1 & 1 & 2
\end{array}\right]\left[\begin{array}{c}
1 \\
-2 \\
2
\end{array}\right]=\left[\begin{array}{c}
-5 \\
-7 \\
3
\end{array}\right] .
$$

(2) True or False? Justify your answer.
(a) If \mathcal{B} and \mathcal{C} are different finite bases for V, then $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ can be singular (recall that singular means "not invertible").
(b) Let H be a subspace of a finite-dimensional vectors space V, and let $\mathcal{B}=\left\{b_{1}, \ldots, b_{r}\right\}$ be a basis for V. Then $H=V$ if and only if $\mathcal{B} \subset H$.
(c) If P is an invertible $n \times n$ matrix, then there are bases \mathcal{B} and \mathcal{C} for \mathbb{R}^{n} such that $P=P_{\mathcal{C} \leftarrow \mathcal{B}}^{P}$.
(a) False, $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ is always invertible. Recall that $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}=\left[\begin{array}{lll}{\left[\vec{b}_{1}\right]_{\mathcal{C}}} & \cdots & {\left[\vec{b}_{m}\right]_{\mathcal{C}}}\end{array}\right]$. Because \mathcal{B} is a basis, its elements are linearly independent and span V. But then $\left\{\left[\vec{b}_{1}\right]_{\mathcal{C}}, \ldots\left[\vec{b}_{m}\right]_{\mathcal{C}}\right\}$ is a basis
for \mathbb{R}^{m} (because the coordinate map is an isomorphism). By the Invertible Matrix Theorem, $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ is invertible.
(b) True. If $H=V$, then we must have $\mathcal{B} \subset H$ (as the elements of a basis for V must be in V). On the other hand, if $\mathcal{B} \subset H$, then $\operatorname{Span} B \subseteq H$ because H is a subspace. But Span $B=V$, so $V \subseteq H$. By the definition of subspace, $H \subseteq V$. The only way this is possible is if $V=H$. (This can also be done by showing that $\operatorname{dim} V=\operatorname{dim} H$.)
(c) True. Let $B=\left\{\vec{b}_{1}, \ldots, \vec{b}_{n}\right\}$ be the columns of P (which is a basis for \mathbb{R}^{n} by the Invertible Matrix Theorem), and let $\mathcal{E}=\left\{\vec{e}_{1}, \ldots, \vec{e}_{n}\right\}$ be the standard basis for \mathbb{R}^{n}. Then $P=P_{\mathcal{B}}$ by the definition of $P_{\mathcal{B}}$. As on p.274, we have $P_{\mathcal{B}}=\underset{\mathcal{E} \leftarrow \mathcal{B}}{P}$.
(3) Let A be an $n \times n$ matrix, and let $\mathcal{B}=\left\{\vec{b}_{1}, \ldots, \vec{b}_{n}\right\}$ be a basis for \mathbb{R}^{n}. Find a formula for the matrix C such that $C[\vec{x}]_{\mathcal{B}}=[A \vec{x}]_{\mathcal{B}}$.

Recall that $P_{\mathcal{B}}[\vec{x}]_{\mathcal{B}}=\vec{x}$. Thus the condition $C[\vec{x}]_{\mathcal{B}}=[A \vec{x}]_{\mathcal{B}}$ for all \vec{x} is equivalent to $C P_{\mathcal{B}}^{-1} \vec{x}=$ $P_{\mathcal{B}}^{-1} A \vec{x}$ for all \vec{x}, which in turn is equivalent to $C P_{\mathcal{B}}^{-1}=P_{\mathcal{B}}^{-1} A$. Solving for C gives $C=$ $P_{\mathcal{B}}^{-1} A P_{\mathcal{B}}$.

Note: the condition $C=P^{-1} A P$ says that A and C are similar matrices, an idea which we will explore more in Chapter 5. It means that C and A behave in very much the same way, but they are acting with respect to different coordinate systems.
(4) (p. 299, \# 9) Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. What are the dimensions of the range and kernel of T if T is one-to-one? What about if T is onto?

If T is one-to-one, that means that $\operatorname{Kernel} T=\{0\}$ so $\operatorname{dim} \operatorname{Kernel} T=0$. If A is the standard matrix of T, this means that $\operatorname{dim} \operatorname{Nul} A=0$. By the Rank Theorem (p.265), this means that $\operatorname{Rank} A=\operatorname{dim} \operatorname{Col} A=n$ (note: A is $m \times n$, so n is the number of columns). But $\operatorname{Col} A=$ Range T, so $\operatorname{dim} \operatorname{Range} T=n$.

On the other hand, if T is onto then $\operatorname{Rank} A=m$, so $\operatorname{dim} \operatorname{Kernel} T=\operatorname{dim} \operatorname{Nul} A=n-m$.

