Math 54, Spring 2009, Sections 109 and 112

(Mini) Worksheet 6 Solutions (Lay 6.5)

Let $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right], \vec{b}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$, and $W=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right]\right\}$.
(i) Find $\operatorname{Proj}_{W} \vec{b}$.
(ii) Why is $A \vec{x}=\operatorname{Proj}_{W} \vec{b}$ consistent?
(iii) Solve $A \vec{x}=\operatorname{Proj}_{W} \vec{b}$.
(iv) If x_{0} is a solution from (iii), why is $\left\|A \vec{x}_{0}-\vec{b}\right\| \leq\|A \vec{x}-\vec{b}\|$ for any $x \in \mathbb{R}^{2}$?
(i) If $\vec{u}=(1,2)$, then $\{\vec{u}\}$ is an orthoogonal basis for W. So the formula for $\operatorname{Proj}_{W} \vec{b}$ is

$$
\operatorname{Proj}_{W} \vec{b}=\frac{\vec{u} \cdot \vec{b}}{\vec{u} \cdot \vec{u}} \vec{u}=\left(\frac{3}{5}, \frac{6}{5}\right) .
$$

(ii) In this case, $W=\operatorname{Col} A$, so $\operatorname{Proj}_{W} \vec{b} \in \operatorname{Col} A$. An equation $A \vec{x}=\vec{c}$ is consistent if and only if $\vec{c} \in \operatorname{Col} A$, so $A \vec{x}=\operatorname{Proj}_{W} \vec{b}$ is consistent.
(iii) Forming the augmented matrix and row-reducing we get

$$
\left[\begin{array}{lll}
1 & 2 & 3 / 5 \\
2 & 4 & 6 / 5
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 2 & 3 / 5 \\
0 & 0 & 0
\end{array}\right]
$$

so in general we have x_{2} free and $x_{1}=\frac{3}{5}-2 x_{2}$. Alternatively, this could be written in parametric vector form $(3 / 5,0)+x_{2}(-2,1)$ (with x_{2} free again).
(iv) The Best Approximation Theorem says that $\left\|\operatorname{Proj}_{W} \vec{b}-\vec{b}\right\|<\|v-\vec{b}\|$ for any $v \in W$ (that is, any $v \in \operatorname{Col} A$) as long as $v \neq \operatorname{Proj}_{W} \vec{b}$. The elements of $\operatorname{Col} A$ are precisely those of
the form $A \vec{x}$ for any $x \in \mathbb{R}^{2}$, and we chose x_{0} so that $A x_{0}=\operatorname{Proj}_{W} \vec{b}$. Substituting these into the above we have $\left\|\operatorname{Proj}_{W} \vec{b}-\vec{b}\right\| \leq\|A \vec{x}-\vec{b}\|$ for any $\vec{x} \in \mathbb{R}^{2}$. Why " \leq " as opposed to " $<$ "? The system $A \vec{x}=\vec{b}$ has a free variable, so if $x_{1} \neq x_{0}$ is another solution to $A \vec{x}=\operatorname{Proj}_{W} \vec{b}$, then $\left\|\operatorname{Proj}_{W} \vec{b}-\vec{b}\right\|=\left\|A x_{1}-\vec{b}\right\|$.

