Operator algebras and geometric conformal field theory

James Tener UC Berkeley

ECOAS, University of Cincinnati October 12, 2013

- Physical notion is not mathematically well-defined
- Different axiomatizations have different features
- There is a large gap between "what is known" and "what should be true"

Our topic:

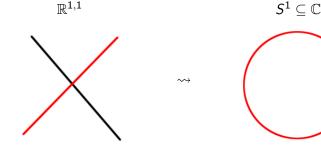
Relationships between different notions of mathematical conformal field theory

Common elements

Common elements: Space-time

 ■ Most interesting with (1 + 1)-dim space-time (e.g. ℝ^{1,1}).

■ Chiral CFT is "¹/₂ + ¹/₂" dimensional. Space-time is the compactified light-ray S¹.



Common elements: Symmetry and states

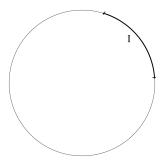
- Symmetry group is the conformal group of space-time.
- Chiral CFT: Diff(S¹) or the Virasoro algebra VIR

$$[L_m, L_n] = (m - n)L_{n+m} + \frac{c}{12}(m^3 - m)\delta_{m+n,0}.$$

- Hilbert space of states with a unitary representation of Diff(S¹) or VIR.
- Vacuum state Ω.

Version 1: Conformal nets

Version 1: Conformal nets



- $\mathcal{A}(I)$ von Neumann algebras of local observables on \mathcal{H}
- Locality: [A(I), A(J)] = 0 if $I \cap J = \emptyset$.
- Conformal symmetry: $\pi(g)\mathcal{A}(I)\pi(g)^* = \mathcal{A}(g \cdot I)$ for $g \in \mathsf{Diff}^+(S^1)$

- Main interest representations $\lambda_I : \mathcal{A}(I) \to \mathcal{B}(H_{\lambda}).$
- Jones-Wassermann subfactors $\lambda_I(\mathcal{A}(I)) \subseteq \lambda_{I^c}(\mathcal{A}(I^c))'.$
- "Tensor" product of representations: composition of sectors.
- We'll talk about rational models (finite index, finite depth).

Version 1: Conformal nets (continued)

Example (Loop groups)

 $\mathcal{A}(I) = \pi_0(L_I G)''$

- G = SU(N), $LG = C^{\infty}(S^1, G)$.
- $L_I G$ = loops supported in I
- π_0 the vacuum representation (at level ℓ)
- Representations of $LG \rightsquigarrow$ representations of the net

Theorem (Wassermann)

The $SU(N)_{\ell}$ nets are rational. For N = 2, the J-W subfactor is A_n with index $4\cos^2(\frac{\pi}{\ell+2})$.

Proof.

Long, difficult paper. Key idea: identify physical notion of "fusion" of representations with Connes-Sauvageot relative tensor product. Explicit construction of intertwiners $\mathcal{H}_{\lambda} \to \mathcal{H}_{\mu} \boxtimes \mathcal{H}_{\nu}$.

Version 2: Vertex operator algebras

- Algebraic notion: pre-Hilbert space \mathcal{H}^0
- State-field correspondence: $\mathcal{H}^0 \to \text{End}(\mathcal{H}^0)[[z^{\pm 1}]].$

$$a\mapsto Y(a,z)=\sum_{n\in\mathbb{Z}}a_nz^{-n-1},\quad a_n\in\mathsf{End}(\mathcal{H}^0)$$

 \blacksquare Quantum fields \longleftrightarrow an observable at every point of spacetime

• The fields are *formal distributions*. For
$$f \in L^2(S^1)$$
,

$$Y(a, f) = \int Y(a, z)f(z)dz = \sum_{n \in \mathbb{Z}} \hat{f}(n)a_n.$$

■ Von Neumann's idea: replace distributions with

$$\mathcal{A}(I) = \{Y(a, f) : \operatorname{supp}(f) \subseteq I\}''$$

Conformal nets vs VOAs

- \blacksquare Representations of conformal nets \longleftrightarrow modules over VOAs
- \blacksquare Product of representations \longleftrightarrow tensor product of modules
- Fusion rules $N_{\lambda\mu}^{\nu} = \dim \operatorname{Hom}(\mathcal{H}_{\nu}, \mathcal{H}_{\lambda} \boxtimes \mathcal{H}_{\mu})$

$$\mathcal{H}_{\lambda} \boxtimes \mathcal{H}_{\mu} \cong \bigoplus \mathsf{N}_{\lambda\mu}^{\nu} \mathcal{H}_{\nu}.$$

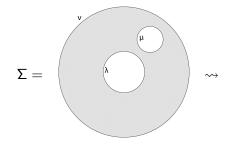
Problem

Given a conformal net and a VOA that encode the same data, identify their fusion rules.

(Without computing them)

Version 3: Segal CFT

Version 3: Segal CFT

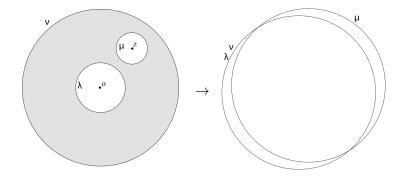


 $\rightsquigarrow E(\Sigma) \subseteq \mathsf{trace \ class}(\mathcal{H}_\lambda \otimes_{\mathbb{C}} \mathcal{H}_\mu \to \mathcal{H}_\nu).$

Gluing of surfaces \longleftrightarrow composition of maps

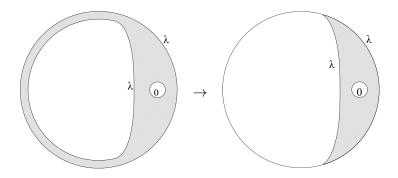
Segal CFT vs VOAs

Philosophy: Segal CFT \rightarrow intertwiners $Y(\cdot, z)$.

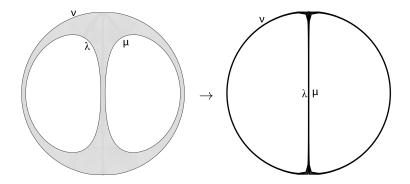


As radii \rightarrow 1.

Philosophy: Segal CFT $ightarrow \mathcal{A}(I)$ and its representations



Philosophy: Segal CFT \rightarrow fusion of conformal nets (Wassermann's conjecture)



Idea

A VOA and a conformal net are "the same" if there is an interpolating Segal CFT

Problem

Shortage of examples of Segal CFTs

(Following the original definition, with nice analytic properties)

Theorem (T '12, '13)

- There exist Segal CFTs for the free fermion (all genus) and SU(N)ℓ (genus zero)
- The "VOA" and "conformal net" limits converge (to the correct VOA and conformal net)
- The Segal CFT encodes the fusion rules for the VOA

Work in progress:

- Obtain conformal net fusion rules from the Segal CFT
- Construct $SU(N)_{\ell}$ Segal CFT in higher genus
- More constructions of Segal CFTs
- New constructions of irreducible, finite index, finite depth subfactors

Thank you!