2. Suppose your RSA modulus is 55, e = 3. Note that \(\varphi(55) = \varphi(5)\varphi(11) = 4 \times 10 = 40 \).

 a) The encryption modulus \(d \) must have the property that \(d \cdot e \equiv 1 \pmod{40} \). Given that \(e = 3 \), we quickly see that \(d = 27 \) is a solution; since \(27 \times 3 = 81 \)

 b) Now, assuming gcd\((m,55)\) = 1 for some message \(m \) we want to show that if \(c \) is the cipher text, then \(m \equiv c^{27} \pmod{55} \) is the plain text. Notice, since \(27 \times 3 \equiv 1 \pmod{40} \) we have that \(d \cdot e = 1 + 2 \times 40 \). Thus, \(c^{27} \equiv (m^3)^{27} \pmod{55} \) and \((m^3)^{27} \equiv 1 (1+80) \equiv m^*(m^{40}) \equiv m^*(m^{40})^2 \equiv m^*1^2 \equiv m \pmod{55} \). Notice, that \(m^{40} \equiv 1 \pmod{55} \) by Euler's theorem since gcd\((m,55)\) = 1 implies that \(m^{40} \equiv 1 \pmod{55} \).