7.1

(a) Let \(p=13 \). Compute \(L_2(3) \)

(b) Show that \(L_2(11) = 7 \)

(a) & (b) We want to find \(x \) such that \(2^x \equiv 7 \pmod{13} \). Note first that 2 is a primitive root mod 13 because \(2^6 = 64 \equiv -1 \pmod{13} \). Taking successive powers of 2, we get \(2^4 = 16 \equiv 3 \pmod{13} \)

So we have that \(x=4 \), and \(L_2(3) = 4 \)

Next, we can check that \(2^7 = 128 \equiv 11 \pmod{13} \). No other power between 1 and 12 works because 2 is a primitive root \(\pmod{13} \).

Thus, we have that \(L_2(11) = 7 \)

For larger moduli we would want to reduce the number of cases we have to compute using, for example, the technique in section 7.2 to first determine whether \(x \) is even or odd.