Homework 7 Solutions
© Katy Craig, 2023

1) \(t \) is a subsequential limit of \(S_n \)
 \(\Downarrow \)
 there exists a subsequence \(S_{nk} \) of \(S_n \) s.t.
 \[\lim_{k \to \infty} S_{nk} = t \]
 \(\downarrow \)
 if \(t \) is a real number, this follows since limit of product is product of limit. If \(t = \pm \infty \), this follows from result from class.
 there exists a subsequence \(S_{nk} \) of \(S_n \) s.t.
 \[\lim_{k \to \infty} S_{nk} = -t \]
 \(\uparrow \)
 there exists a subsequence \(t_{nk} \) of \(-S_n\) s.t.
 \[\lim_{k \to \infty} t_{nk} = t \]
 \(\downarrow \)
 \(t \) is a subsequential limit of \(S_n \)

2) First, suppose \(\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = s \in \mathbb{R} \).
 Fix \(\varepsilon > 0 \). There exists \(N, N_c \) s.t. \(n > N \) ensures \(|a_n - s| < \varepsilon \) and \(n > N_c \) ensures \(|c_n - s| < \varepsilon \).
 Furthermore, there exists \(N \) s.t. \(n > N \) ensures \(a_n \leq b_n \leq c_n \). Let \(\tilde{N} = \max \{ N, N_a, N_c, N_c \} \). Then \(n > \tilde{N} \) ensures \(s - \varepsilon < a_n \leq b_n \leq c_n < s + \varepsilon \), so \(|b_n - s| < \varepsilon \).
 This shows \(\lim_{n \to \infty} b_n = s \).
Next, suppose \(\lim_{n \to \infty} a_n = +\infty \). Fix \(M > 0 \).
There exists \(N \) s.t. \(n > N \) ensured \(a_n > M \).
There exists \(N \) s.t. \(n > N \) ensured \(a_n \leq b_n \).
Let \(\tilde{N} = \max \{ N, N' \} \). Then \(n > \tilde{N} \) ensured \(b_n > M \). This shows \(\lim_{n \to \infty} b_n = M \).

Finally, suppose \(\lim_{n \to \infty} c_n = -\infty \). Then
\(-c_n \leq -b_n \leq -a_n\) for all but finitely many \(n \) and \(\lim_{n \to \infty} -c_n = +\infty \). By the previous case, \(\lim_{n \to \infty} -b_n = +\infty \). Thus, \(\lim_{n \to \infty} b_n = -\infty \).

3a Claim: \(S = \{ \frac{1}{e} : e \in \mathbb{N} \} \)

Since \(s_{n_k} = \frac{1}{k} \) is a subsequence,
OES. Since \(s_{n_k} = \frac{1}{k} \) is a subsequence for all \(e \in \mathbb{N} \), \(\frac{1}{e} \in S \).

It remains to show no other real number or \(+\infty \) belongs to \(S \).

Neither \(+\infty \) nor \(-\infty \) belong to \(S \), since the sequence is bounded.

Suppose \(a \in S \) for some \(a \in \mathbb{R} \). By the main subsequence theorem, it suffices to
To show $\exists \varepsilon > 0$ so that $|a - s_n| \geq \varepsilon$ for all n.

If $a > 1$, then $|a - s_n| \geq |a - 1| = \varepsilon \forall n$.

If $a < 0$, then $|a - s_n| > |a| = \varepsilon \forall n$.

If $\frac{1}{2} > a > \frac{1}{2} + 1$ for some $k \in \mathbb{N}$, then $|a - s_n| \geq \min \{ |a - \frac{1}{2}|, |a - \frac{1}{2} + 1| \} = \varepsilon \forall n$.

This completes the proof.

(b) $\limsup s_n = \max (s) = 1$

$\liminf s_n = \min (s) = 0$
(a) s_n is a bounded sequence if $\exists M > 0$ s.t. $|s_n| < M$ for all $n \in \mathbb{N}$.

(b) Assume for the sake of contradiction that $\exists k \in \mathbb{N}$ s.t. $B_k : \exists s_n : s_n > s - \frac{1}{k}$ has finitely many elements.

Case 1: B_k has zero elements.
Then $s_n \leq s - \frac{1}{k}$ for all $n \in \mathbb{N}$.
This contradicts the fact that s is the least upper bound.

Case 2: B_k has a nonzero number of elements. Then B_k has a maximum $M_k := \max B_k$. Since $s_n < s$ for all n, $M_k < s$. Also, note that if $s_n \notin B_k$, then $s_n \leq s - \frac{1}{k} = M_k$. Thus M_k is an upper bound for $\exists s_n : n \in \mathbb{N}$. Since $M_k < s$, this contradicts that s was the least upper bound.

Therefore, B_k has infinitely many elements for all $k \in \mathbb{N}$.
(c) Fix $\varepsilon > 0$. Choose $k \in \mathbb{N}$ so that $\frac{1}{k} < \varepsilon$. Then $\exists n : |s_n - s| < \varepsilon^2 \implies \exists n : |s_n - s| < \frac{1}{k^2}$

$$= \{n : s - \frac{1}{k} < s_n < s + \frac{1}{k}\}$$

since $s_n < s \forall n \implies \exists n : s - \frac{1}{k} < s_n < s + \frac{1}{k}$

Furthermore $\exists n : s - \frac{1}{k} < s_n < s + \frac{1}{k}$, since each element s_n in B_k corresponds to at least one index n in $\exists n : s - \frac{1}{k} < s_n < s + \frac{1}{k}$.

By part (b), we obtain $|\exists n : |s_n - s| < \varepsilon^2| = +\infty$. Thus, by the main subsequences theorem, there is a subsequence of s_n converging to s.

(d) Define $s_n = \frac{1}{n}$. Then $s = \sup \{s_n : n \in \mathbb{N}\} = 1$, but since $\lim_{n \to \infty} s_n = 0$, all subsequences of s_n converge to 0.
5. (a) If \(s_{nk} \) is bounded, by Bolzano-Weierstrass, \(s_{nk} \) must have a convergent subsequence \(s_{nke} \). Since \(s_{nke} \) is also a subsequence of \(s_n \), \(s_n \) has a convergent subsequence.

(b) Suppose \(|s_n| \) does not diverge to \(+\infty \). Then \(\exists M > 0 \) s.t. \(\forall N, \exists n > N \) for which \(|s_n| \leq M \). Since \(|s_n| = 0 \) for all \(n \in \mathbb{N} \), this implies there exist infinitely many \(n \in \mathbb{N} \) for which \(0 \leq |s_n| \leq M \). Consequently, there exists a subsequence \(s_{nke} \) for which \(0 \leq |s_{nke}| \leq M \) \(\forall k \in \mathbb{N} \). Therefore \(s_{nk} \) is a bounded sequence, so by part (a), \(s_n \) must have a convergent subsequence.

6. (a) If \(\lim s_n = s \), then all subsequences of \(s_n \) also converge to \(s \). Hence every subsequence \(s_{nk} \) has a further subsequence \(s_{nke} = s_{nk} \) that converges to \(s \).
Suppose \(\lim s_n \neq s \). Then, \\
\[\exists \varepsilon > 0 \text{ s.t. } \forall N, \exists n > N \text{ s.t. } |s_n - s| \geq \varepsilon \]

First, taking \(N = 1 \), we have \(\exists n_1 > 1 \text{ s.t. } |s_{n_1} - s| \geq \varepsilon \). Suppose we have chosen \(n_k \). Taking \(N = n_{k-1} \), we see that \(\exists n_k > n_{k-1} \text{ s.t. } |s_{n_k} - s| \geq \varepsilon \).

Therefore there exists a subsequence \(s_{n_k} \) s.t. \(|s_{n_k} - s| \geq \varepsilon \) \(\forall k \). Since \(s_{n_k} \) is always at least distance \(\varepsilon \) from \(s \), no further subsequence of \(s_{n_k} \) can converge to \(s \).

If \(\sum_{k=1}^{\infty} a_k = +\infty \), then \(s_n := \sum_{k=1}^{n} a_k \) diverges to \(+\infty \).

Since \(0 \leq a_k \leq b_k \), \(t_n := \sum_{k=1}^{n} b_k \geq s_n \). The result then follows from the generalized squeeze lemma.
Define $S_n = \sum_{k=1}^{n} a_k$, $T_n = \sum_{k=1}^{n} b_k$.

Note that our hypotheses ensure S_n converges to $A \in \mathbb{R}$ and T_n converges to $B \in \mathbb{R}$.

\[\lim_{n \to \infty} (S_n + T_n) = \lim_{n \to \infty} S_n + \lim_{n \to \infty} T_n = A + B \]

Suppose $\sum_{k=1}^{\infty} |a_k|$ is convergent, so it satisfies the Cauchy criterion. We will show $\sum_{k=1}^{\infty} |a_k|$ converges by showing it satisfies the Cauchy criterion.

Fix $\varepsilon > 0$. \(\exists \ N \ s.t. \ n > m > N \) implies
\[\left| \sum_{k=m+1}^{n} |a_k| \right| < \varepsilon. \]

Since \(\left| \sum_{k=m+1}^{n} a_k \right| \leq \sum_{k=m+1}^{n} |a_k| \), we have

that \(n > m > N \) implies

\[\left| \sum_{k=m+1}^{n} a_k \right| < \varepsilon. \]

Thus, \(\sum_{k=1}^{\infty} a_k \) satisfies the Cauchy criterion.