Goal: we know a lot about monotone sequences... what can we say about bounded sequences.

First, recall...

Def (sequence): A sequence is a function whose domain is a set of the form \(\{m, m+1, m+2, \ldots\} \) for some \(m \in \mathbb{Z} \). We study sequences whose range is \(\mathbb{R} \).

Remark: While we could write \(s(n) \), we use \(s_n \) to emphasize that sequences are a
special type of functions!

Now, we will define the notion of subsequence.

Def (subsequence): Consider a sequence s_n. For any sequence n_k of natural numbers satisfying $n_1 < n_2 < n_3 < \ldots$, a sequence of the form s_{n_k} is a subsequence of s_n.

Remark: We could write s_n as $s(n)$, n_k as $n(k)$, and s_{n_k} as $s(n(k))$.

Informally, a subsequence is any infinite collection of elements from the original sequence, listed in order.

Ex 1: $s_n = (-1, 2, -3, 4, \ldots, (-1)^n n, \ldots)$

$$s_{n_k} = (-1, -3, -5, \ldots, (-1)^{(2k-1)} (2k-1), \ldots)$$

$$n_k = (1, 3, 5, \ldots, 2k-1, \ldots)$$
Note that
\[
\begin{align*}
 a_N &= \sup \{ s_n : n > N^2 \} = (\infty, \infty, \ldots, \infty, \ldots) \\
 b_N &= \inf \{ s_n : n > N^2 \} = (0, 0, \ldots, 0, \ldots)
\end{align*}
\]

\text{Ex 6: } s_n = (1, \frac{1}{2}, 3, \frac{1}{4}, \ldots, n, \ldots)

\text{Ex 7: } s_n = (\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \ldots, (2k)^{-1}, \ldots)

\text{Ex 8: } s_n = (2, 4, 6, \ldots, 2k, \ldots)

\text{Ex 9: } s_n = (\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \ldots, (2k)^{-1}, \ldots)
Limits of Subsequences

Lemma: Given a sequence s_n, $n \in \mathbb{N}$, if s_{nk} is a subsequence, then $n_k \geq k$ for all $k \in \mathbb{N}$.

Pf: Base case: When $k=1$, $n_1 \geq 1$ since $n_k \in \mathbb{N}$ for all k.

Inductive step: Assume $n_{k-1} \geq k-1$. Since $n_k > n_{k-1}$, we have $n_k \geq n_{k-1} + 1 \geq k$.

Def: (subsequential limit) A **subsequential limit** of a sequence s_n is any real number or symbol $+\infty$ or $-\infty$ that is the limit of some subsequence of s_n.

Ex: $s_n = (1, \frac{1}{2}, 3, \frac{1}{4}, 5, \frac{1}{6}, \ldots)$

0 and $+\infty$ are subsequential limits.

Thm: If a sequence s_n converges to a limit s, then every subsequence also converges to s.
Let s_{n_k} be an arbitrary subsequence of s_n. Fix $\varepsilon > 0$. Since $\lim_{n \to \infty} s_n = s$, there exists N such that $n > N$ ensures $|s_n - s| < \varepsilon$. If $k > N$, then $n_k = k > N$, so $|s_{n_k} - s| < \varepsilon$. Since $\varepsilon > 0$ was arbitrary, we have $\lim_{k \to \infty} s_{n_k} = s$.

Ex: $s_n = (1, \frac{1}{2}, \frac{1}{3}, \ldots)$
- \emptyset is the set of all subsequential limits

Thm (main subsequences theorem):
Let s_n be a sequence of real numbers.

(a) Let $t \in \mathbb{R}$
- The set $\{n : |s_n - t| < \varepsilon\}$ is infinite for all $\varepsilon > 0$
 - if and only if
- t is a subsequential limit of s_n.

(b) s_n is unbounded above $\iff +\infty$ is a subseq. limit.
(c) s_n is unbounded below $\iff -\infty$ is a subseq. limit.

Mental image (a):

```
\begin{tikzpicture}
    \draw[->] (0,0) -- (7,0) node[right] {$n$};
    \draw[->] (0,0) -- (0,5) node[above] {$s_n$};
    \draw (0,1.5) -- (5,1.5) node[above] {$t$};
    \draw[dashed] (0,0) -- (5,0);
    \draw[dashed] (0,1.5) -- (5,1.5);
    \draw (1,0.5) -- (1,0) -- (5,0);
    \draw (2,1) -- (2,0) -- (5,0);
    \draw (3,0.5) -- (3,0) -- (5,0);
    \draw (4,1) -- (4,0) -- (5,0);
    \draw (5,0) -- (5,0.5) node[right] {$\varepsilon / 2$};
    \draw (5,0) -- (5,1);\end{tikzpicture}
```
Lemma: If s_n is unbounded above, the set $\{n: s_n > M\}$ is infinite for all $M > 0$.

Proof: Assume, for the sake of contradiction, that there exists $M > 0$ for which $\{n: s_n > M\}$ is finite. Define

$$s_{\text{max}} = \max \{s_n: s_n > M\}.$$

Then define $\tilde{M} = \max \{s_{\text{max}}, M\}$

- if $s_n > M$, $s_n \leq s_{\text{max}} \leq \tilde{M}$
- if $s_n \leq M$, $s_n \leq \tilde{M}$.

Thus, for all $n \in \mathbb{N}$, $s_n \leq \tilde{M}$, so s_n is bounded above, which is a contradiction. \square
Proof of Main Subsequences Theorem

(a) Suppose \(\exists n: |s_n - t| < \varepsilon \) is infinite for all \(\varepsilon > 0 \).

We can construct a subsequence of \(s_n \) in the following way:

Choose \(s_{n_1} \) so that \(|s_{n_1} - t| < 1 \).
Choose \(s_{n_2} \) so that \(|s_{n_2} - t| < \frac{1}{2} \) and \(n_2 > n_1 \).

Choose \(s_{n_k} \) so that \(|s_{n_k} - t| < \frac{1}{k} \) and \(n_k > n_{k-1} \).

Note that \(|s_{n_k} - t| < \frac{1}{k} \Leftrightarrow t - \frac{1}{k} < s_{n_k} < t + \frac{1}{k} \) for all \(k \in \mathbb{N} \). So by the squeeze lemma, \(\lim_{k \to \infty} s_{n_k} = t \), so \(\lim_{k \to \infty} s_{n_k} = t \) and \(t \) is a subsequential limit.

Now, suppose \(t \) is a subsequential limit of \(s_n \).

Fix \(\varepsilon > 0 \). Since there exists a subsequence \(s_{n_k} \) that converges to \(t \), there exists \(N \) s.t. \(k > N \) ensures \(|s_{n_k} - t| < \varepsilon \).

Therefore, \(\{ s_{n_k}: k > N \} \subseteq \{ s_n: |s_n - t| < \varepsilon \} \).

Since \(\{ s_{n_k}: k > N \} \) is infinite, so is \(\{ s_n: |s_n - t| < \varepsilon \} \).
(b) Suppose \([s_n \text{ is unbounded above}]\). By the lemma, for all \(M > 0\), \(\exists n: s_n \geq M\) is infinite. Hence, we may construct a subsequence as follows.

Choose \(n_1\) so that \(s_{n_1} > 1\).

Choose \(n_2\) so that \(s_{n_2} > 2\) and \(n_2 > n_1\).

Choose \(n_k\) so that \(s_{n_k} > k\) and \(n_k > n_{k-1}\).

Fix \(\tilde{M} > 0\). For \(k > \tilde{M}\), \(s_{n_k} > k > \tilde{M}\).

Since \(\tilde{M}\) was arbitrary, \(\lim_{k \to \infty} s_{n_k} = +\infty\).

Thus \(+\infty\) is a subsequential limit.

Suppose \([+\infty \text{ is a subsequential limit}]\). Assume, for the sake of contradiction, that \(s_n\) is bounded above, that is there exists \(M > 0\) s.t. \(s_n \leq M\) for all \(n \in \mathbb{N}\). Take \(s_{n_k}\) s.t. \(\lim_{k \to \infty} s_{n_k} = +\infty\).

Then \(s_{n_k} \leq M\) for all \(k \in \mathbb{N}\). This is a contradiction.

(c) Note that \([s_n \text{ is unbounded below}]\)
$-\infty$ is unbounded above]

(b)

$+\infty$ is a subsequential limit of $-\infty$

c

$-\infty$ is a subsequential limit of ∞