Thm (main subsequences theorem)
Let s_n be a sequence of real numbers.
(a) Let $t \in \mathbb{R}$
 \[
 \text{The set } \{n : |s_n - t| < \varepsilon\} \text{ is infinite for all } \varepsilon > 0
 \]
 if and only if
 \[
 \{t \text{ is a subsequential limit of } s_n\}
 \]
(b) s_n is unbounded above $\iff +\infty$ is a subseq. limit.
(c) s_n is unbounded below $\iff -\infty$ is a subseq. limit.

Why are subsequences important?

Even though not all sequences are monotone

Thm: Every sequence s_n has a monotonic subsequence.
Proof: We will say that the nth element of a sequence is dominant if it is greater than every element that follows, that is S_n is dominant if $S_n > S_m$ for all $m > n$.

\[\text{Case 1:} \text{ Suppose } S_n \text{ has infinitely many dominant elements.}\]

Define S_{n_k} to be the subsequence of dominant terms. Then $S_{n_k} > S_{n_{k+1}}$ for all $k \in \mathbb{N}$, so S_{n_k} is decreasing, hence monotone.

\[\text{Case 2:} \text{ Suppose } S_n \text{ has finitely many dominant elements.}\]

- Choose n_1 so that S_{n_1} is beyond all of the dominant elements in the sequence.
- Since S_{n_1} is not dominant, there exists $n_2 > n_1$ so that $S_{n_2} \geq S_{n_1}$.
- Since S_{n_k} is not dominant, there exists $n_{k+1} > n_k$ so that $S_{n_{k+1}} \geq S_{n_k}$.

Thus we have found a subsequence that is increasing, hence monotone. \(\square\)
MAJOR THEOREM 5

Thm (Bolzano-Weierstrass): Every bounded sequence has a convergent subsequence.

Pf: If \(s_n \) is a bounded sequence, the previous theorem ensures there exists a subsequence \(s_{n_k} \) that is monotonic (and also bounded). Since all bounded, monotone sequences converge, \(s_{n_k} \) is convergent.