Lecture 13
© Katy Craig, 2024

How do subsequences relate to lim inf and lim sup?

Downside: in general a_n, b_n are not subsequences of s_n.

Upside:

Thm: For any sequence s_n, $\limsup s_n$ and $\liminf s_n$ are subsequential limits.

Pf: First, we will show $\limsup s_n$ is a subsequential limit.

CASE 1: Suppose $\limsup s_n = -\infty$. Since $\liminf s_n \leq \limsup s_n$, then $\liminf s_n = -\infty$, so...
\[\lim_{n \to \infty} s_n = -\infty. \]

CASE 2: Suppose \(\limsup_{n \to \infty} s_n = +\infty \), that is \(\lim_{n \to \infty} an = +\infty \). Fix arbitrary \(M > 0 \). Then there exists \(N_0 \) s.t. \(N > N_0 \) ensures \(an > M \). Thus \(M \) is not an upper bound of \(\{ sn : n > N \} \) when \(N > N_0 \), so there exists \(s_{N_1} > M \). Thus \(s_n \) is not bounded above. Hence \(\infty \) is a subsequential limit.

CASE 3: Suppose \(\lim_{n \to \infty} s_n = t \) for \(t \in \mathbb{R} \), that is \(\lim_{n \to \infty} an = t \). Fix arbitrary \(\varepsilon > 0 \). We will show \(\{n: t - \varepsilon < s_n < t + \varepsilon\} = \{n: |an-t| < \varepsilon\} \) is infinite.

By defn of convergence of \(an \) to \(t \), \(\exists N_0 \) s.t. \(N > N_0 \) ensures \(|an-t| < \varepsilon \). Then \(\sup\{sn : n > N_0\} = an < t + \varepsilon \). In particular, for \(N = N_0 + 1 \), \(\sup\{s_n : n > N_0 + 1\} < t + \varepsilon \). Thus for all \(n > N_0 + 1 \), \(s_n < t + \varepsilon \).
Suppose, for the sake of contradiction, that \(\{n: t-\varepsilon < s_n < t+\varepsilon\} \) is finite. Since we know \(n > N_0 + 1 \) ensures \(s_n < t + \varepsilon \), there must be \(N_1 > N_0 + 1 \) for which \(s_n \leq t - \varepsilon \) for all \(n > N_1 \).

Then \(a_n = \text{sup}\{s_n: n > N\} \leq t - \varepsilon \) for \(N > N_1 \). This implies \(\lim_{n \to \infty} a_n \leq t - \varepsilon \). This contradicts that \(\lim_{n \to \infty} a_n = \lim_{n \to \infty} s_n = t \). Therefore, \(\{n: t-\varepsilon < s_n < t+\varepsilon\} \) is infinite. Since \(\varepsilon > 0 \) was arbitrary, by main subseq. theorem, \(t \) is a subsequential limit.

Next, we show \(\lim_{n \to \infty} s_n \) is a subsequential limit.

Fact: \(\lim_{n \to \infty} s_n = \limsup_{n \to \infty} -s_n \)

Thus, by what we've already shown, \(\lim_{n \to \infty} s_n \) is a subsequential limit of \(-s_n \).

Fact: \(t \) is a subseq. limit of \(s_n \) \iff \(-t \) is a subseq. limit of \(-s_n \).
Thus \(\lim_{n \to \infty} s_n \) is a subseq limit of \(s_n \).

In fact, \(\limsup_{n \to \infty} s_n \) and \(\lim_{n \to \infty} s_n \) aren't just any subsequential limit: they are the largest and smallest subsequential limit.

Recall: squeeze lemma

Given \(a_n \leq b_n \leq c_n \) for all \(n \in \mathbb{N} \), if

\[
\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n,
\]

then \(\lim_{n \to \infty} b_n = \lim_{n \to \infty} c_n \).

Thm: Let \(S \) denote the set of subsequential limits of \(s_n \), then \(\limsup_{n} s_n = \max(S) \) and \(\liminf_{n} s_n = \min(S) \).

Pf: By the previous theorem, we have \(\limsup_{n \to \infty} s_n \in S \) and \(\lim_{n \to \infty} s_n \in S \), so it suffices to show that, for all \(t \in S \), we have \(\lim_{n \to \infty} s_n \leq t \leq \limsup_{n \to \infty} s_n \). Suppose \(\lim_{k \to \infty} s_{n_k} = t \).
Since \(\eta_k = k \), \(\{ s_{nk} : k > N \} \leq \{ s_{nim} : n > N \} \) for any \(N \in \mathbb{R} \). Thus

\[
\begin{align*}
b_N &= \inf \{ s_{nim} : n > N \} \leq \inf \{ s_{nk} : k > N \} \\
&\leq \sup \{ s_{nk} : k > N \} \leq \sup \{ s_{nim} : n > N \} = a_N
\end{align*}
\]

Sending \(N \to \infty \),

\[
\lim_{n \to \infty} s_n = \lim_{N \to \infty} b_N \leq \lim_{k \to \infty} s_{nk} = t = \limsup s_{nk} \leq \lim_{N \to \infty} a_N = \limsup s_{nim} \quad \square
\]