Lecture 6
© Katy Craig, 2024

Now, we will prove several limit theorems that will help us find the limits of more complicated sequences by breaking them into parts.

Thm (limit of sum is sum of limits): If s_n and t_n are convergent sequences, then \(\lim_{n \to \infty} (s_n + t_n) = \lim_{n \to \infty} s_n + \lim_{n \to \infty} t_n \).

Ex: \(\lim_{n \to \infty} \left(\frac{\pi}{n} + \frac{\sqrt{2}}{n^2} \right) = \lim_{n \to \infty} \frac{\pi}{n} + \lim_{n \to \infty} \frac{\sqrt{2}}{n^2} = 0 + 0 = 0 \)

Recall: triangle inequality \(|a+b| \leq |a| + |b| \).

PG: Let \(s = \lim_{n \to \infty} s_n \) and \(t = \lim_{n \to \infty} t_n \). Fix \(\epsilon > 0 \).
We must show there exists \(N \in \mathbb{N} \) so that \(n > N \) ensures \(|(s_n + t_n) - (s + t)| < \epsilon \).

Note that \(|(s_n + t_n) - (s + t)| \leq |s_n - s| + |t_n - t| \).
Since \(s_n \to s \) and \(t_n \to t \) given \(\varepsilon = \frac{\delta}{2} > 0 \), there exists \(N_s \) and \(N_t \in \mathbb{R} \) so that \(n > N_s \) ensures \(|s_n - s| < \varepsilon \) and \(n > N_t \) ensures \(|t_n - t| < \varepsilon \).

Let \(N = \max \{ N_s, N_t \} \). Then for all \(n > N \),
\[
|s_n + t_n - (s + t)| \leq |s_n - s| + |t_n - t| < \varepsilon + \varepsilon = \varepsilon.
\]

\(\square \)

Remark: The requirement that \(s_n \) and \(t_n \) are convergent sequences is necessary. For example, \(s_n = (-1)^n \), \(t_n = (-1)^{n+1} \).

Then \(\lim_{n \to \infty} s_n + t_n = 0 \), but \(\lim_{n \to \infty} s_n \) and \(\lim_{n \to \infty} t_n \) do not exist.
Thm (limit of product is product of limits): If \(s_n \) and \(t_n \) are convergent sequences, \(\lim_{n \to \infty} s_n t_n = (\lim_{n \to \infty} s_n)(\lim_{n \to \infty} t_n) \)

Exercise

Give an example to show that the assumption that \(s_n \) and \(t_n \) are convergent sequences is necessary for the previous theorem to be true.

Proof: Let \(s = \lim_{n \to \infty} s_n, \ t = \lim_{n \to \infty} t_n \). Fix \(\varepsilon > 0 \).

We must show there exists \(N \in \mathbb{N} \) so that \(n > N \) ensures \(|s_n t_n - st| < \varepsilon \).

Note that

\[
|s_n t_n - st| = |s_n t_n - s t_n + s t_n - s t| \\
\leq |s_n t_n - s t_n| + |s t_n - s t| \\
= |s_n||t_n - t| + |t||s_n - s|
\]

Since \(s_n \) is a convergent sequence, it is a bounded sequence, that is there exists \(M_s \) so that \(|s_n| \leq M_s \) for all \(n \). Define \(M = \max \{ M_s, |t|, 1 \} \) ensures \(M \geq M_s, M \geq |t|, M > 0 \).
Combining with estimates above, \(|s_n - s| < M|t_n - t| + M|s_n - s|\).
For \(\varepsilon = \frac{\varepsilon}{2M} > 0\), there exists \(N_s\) and \(N_t\) so that \(n > N_s\) ensures \(|s_n - s| < \varepsilon\) and \(n > N_t\) ensures \(|t_n - t| < \varepsilon\). Let \(N = \max\{N_s, N_t\}\). Then for all \(n > N\), \(|s_n - s| < M\varepsilon + M\varepsilon = \varepsilon\). □

Theorem (limit of quotient is quotient of limits): If \(s_n\) and \(t_n\) are convergent sequences, \(s_n \neq 0\) for all \(n\), and \(\lim\limits_{n \to \infty} s_n = 0\), then
\[
\lim\limits_{n \to \infty} \left(\frac{t_n}{s_n} \right) = \frac{\lim\limits_{n \to \infty} t_n}{\lim\limits_{n \to \infty} s_n}.
\]

Proof: See textbook.
Thm (basic examples):
(a) \(\lim_{n \to \infty} \left(\frac{1}{n} \right)^p = 0 \) if \(p > 0 \)
(b) \(\lim_{n \to \infty} a^n = 0 \) if \(|a| < 1 \)
(c) \(\lim_{n \to \infty} n \cdot n = 1 \)
(d) \(\lim_{n \to \infty} a\cdot n = 1 \) if \(a > 0 \)

Pf: See textbook.