Homework 1 Solutions
(C) Katy (raig, 2023
(D) Base case: When n=1, we have
$$3=4\cdot1^2-1$$
.
Inductive step: Suppose $3+11+...+(8n-5)=2(n^2-n)$.
Then $3+11+...+(8n-5)+(8(n+1)-5)=(4(n^2-n))+(8(n+1)-5)$.
 $=4n^2-n+8n+3=4(n^2+2n+1)-(n+1)=4((n+1)^2-(n+1))$.
which completes the proof.
(D) Base case: When n=(, we have $1+\frac{1}{2}=2-\frac{1}{2}$.
Inductive step: Suppose $1+\frac{1}{2}$

(3) Assume for the sake of contradiction that q > p. By the proposition from class, there exists $r \in Q$ so that q > r > p. By assumption, since r > p, we must have $q \leq r$. This contradicts the fact that q > r. Therefore, we must have $q \leq p$. $q \leq p$.

(4)
(1) Case 1: a = 0
Then
$$|a| = a = 0$$

Case 2: $a \le 0$
Then $-a \ge 0$, so $|a| = -a \ge 0$.
(ii) Case 1: $ab \ge 0$
Then either $a \ge 0$ and $b \ge 0$ or
 $a \le 0$ and $b \le 0$. In the first case,
 $|ab| = ab = |a||b|$.
In the second case,
 $|ab| = ab = (-a)(-b) = |a||b|$.
Case 2: $ab \le 0$
Then either $a \ge 0$ and $b \le 0$ or
 $a \le 0$ and $b \ge 0$. By commutativity of
multiplication, we may assume WLOO that
 $a \ge 0$ and $b \le 0$. Thus,
 $|ab| = -ab = a(-b) = |a||b|$.

(iii) (ase 1 : a 20 Then lat=a, so lat=a. Furthermore, since -a=0, part(i) ensures a 202-a.

(ase 2: a = 1) Since -azo and part (ii) ensures 1-al=1-111al fal, by Case 1, we have lal=1-alz-a and lal=1-alz-(-a)=a.

(1) (ave 1: a+b=0

Then, by part (iii), latbl = atb = lal+lbl.

Case 2: a+b ≤ 0

Then, by part(iii), $|atb| = -(atb) = -a - b \leq |a| + |b|$.

Suppose 1615a. By (4)(ii), belbea and -belbea. Multiplying the second inequality on both sides by -1, we obtain () $-a \le b$. Thus $-a \le b \le a$.

Now, suppose -a ≤ b ≤ a. Then -a ≤ b => -b ≤ a. Since b ≤ a and -b ≤ a, the definition of the absolute value ensures 161 ≤ a.

(b) First, we will show lat-161 ≤ la-61 (A) for all a, b ∈ IR. This is a consequence of the triangle inequality (Q4(iv), since

 $|a| = |a - b| + b| \le |a - b| + |b|.$

Now, note that since a and b were arbitrary, we also have

161-1a1=1a-61 (7+7)

for all a, bet. Combining (4) and (44), by the definition of the about value, we obtain $||a|-|b|| \leq |a-b|.$

6@ Applying the result from Q5@, $|a-b| \leq c \leq) - c \leq a-b \leq c \leq) b-c \leq a \leq b+c.$ (b) Note that, if either la-bl-c or if b-c < a < btc, we must have c>0. Thus, we assume c>0. It suffices to show that $|a-b|\neq c \iff a\neq b-c$ and $a\neq b+c$. Case 1: azb. Since CZO, we always have a Zb-c. Furthermore, la-blzc <> a-b Zc <> a Zb+c

Case $2: b \ge a$. Since $c \ge 0$, we always have $a \ne b + c$.

Furthermore, $|a-b|\neq c \Leftrightarrow b-a\neq c \Leftrightarrow a\neq b-c$.