MATH 117: HOMEWORK 1

Due Friday, January 12th at 11:59pm

Questions followed by * are to be turned in. Questions without * are extra practice. At least one extra practice question will appear on each exam.

Question 1

- (a) Prove by induction that $3 + 11 + \dots + (8n 5) = 4n^2 n$ for all $n \in \mathbb{N}$.
- (b) Prove by induction that $1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n} = 2 \frac{1}{2^n}$ for all $n \in \mathbb{N}$.

Question 2*

We now describe a useful extension of the principle of mathematical induction. Fix $m \in \mathbb{N}$. Given a list of propositions $P_m, P_{m+1}, P_{m+2}, \ldots$, if you can show that

- (i) P_m is true;
- (ii) for all $n \in \mathbb{N}$ with $n \ge m$, if P_n is true then P_{n+1} is true;

then $P_m, P_{m+1}, P_{m+2}...$ are all true.

Use this extension of the principle of mathematical induction to prove the following statements:

- (a) $n^2 > n+1$ for all natural numbers $n \ge 2$.
- (b) $n! > n^2$ for all natural numbers $n \ge 4$. (Recall that $n! = n(n-1) \cdots 2 \cdot 1$. For example, $5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$.)

Question 3^*

Suppose $p, q \in \mathbb{Q}$. Suppose that for all $s \in \mathbb{Q}$ with s > p, we have $q \leq s$. Prove that $q \leq p$. (Hint: Prove the result by contradiction, using the fact that, between any two rational numbers, there is a rational number.)

Question 4*

Use the definition of the absolute value to prove the following results for all $a, b \in \mathbb{R}$. You may use all facts you learned about \mathbb{R} in previous courses without further justification.

- (i) $|a| \ge 0$
- (ii) |ab| = |a| |b|
- (iii) $|a| \ge a$ and $|a| \ge -a$
- (iv) $|a+b| \le |a|+|b|$

Question 5

Use the definition of the absolute value to prove the following results for all $a, b \in \mathbb{R}$. You may use all facts you learned about \mathbb{R} in previous courses without further justification.

- (a) For any $a, b \in \mathbb{R}$, prove that $|b| \leq a$ if and only if $-a \leq b \leq a$.
- (b) For any $a, b \in \mathbb{R}$, prove that $||a| |b|| \le |a b|$. This is known as the *reverse triangle inequality*.

Question 6*

Use the definition of the absolute value to prove the following results for any $a, b, c \in \mathbb{R}$. You may use all facts you learned about \mathbb{R} in previous courses without further justification. We will use these inequalities repeatedly throughout the course.

- (a) Prove that $|a b| \le c$ if and only if $b c \le a \le b + c$
- (b) Prove that |a b| < c if and only if b c < a < b + c.

For each part, draw a picture of the real number line to illustrate the statement that you proved.