Homework 3 Solutions \bigcirc Katy (rang, 2024 \bigcirc Suppose a=sup(s). By definition, a is an upper bound of S. Fix $\varepsilon > 0$. Then $a - \varepsilon < a$. Thus, $a - \varepsilon$ must not be an upper bound of S. Hence, there exists $s \in S s t$. $a - \varepsilon < s$.

Suppose a is an upper bound of S and, for all $\varepsilon^{>0}$, $\exists s \varepsilon S \ s.t. \ s^{>a=\varepsilon}$. Let M be an upper bound of S. Assume, for the sake of contradiction, that M<a. Then $\varepsilon = a - M > 0$. Thus, $\exists s \varepsilon S \ s.t. \ s^{>a-\varepsilon} = M$. This contradicts that M was an upper bound. Therefore M Za. This shows a is the least upper bound or supremum of S.

(2)
(3) We estimate as follows:

$$x \le 2$$
 $e \le 1 => e^{2} \le e$
 $(x+e)^{2} = x^{2}+2ex + e^{2} \le x^{2}+4e+e^{2} \le x^{2}+5e$
 $(y-e)^{2} = y^{2}-2ey + e^{2} \ge y^{2}-4e+e^{2} \ge y^{2}-4e$

B) Since
$$\chi^2 < 2$$
, $\tilde{\varepsilon}_1 := 2 - \chi^2 > 0$. Let $\varepsilon_1 = \frac{\tilde{\varepsilon}_1}{10}$.
Then $\chi^2 + 5\varepsilon_1 = \chi^2 + \frac{\tilde{\varepsilon}_1}{2} < \chi^2 + \tilde{\varepsilon}_1 = 2$.

Since
$$y^2 > 2$$
, $\tilde{z}_2 = y^2 - 2 > 0$. Let $\varepsilon_2 = \frac{\tilde{\varepsilon}_2}{8}$.
Then $y^2 - 4\varepsilon_2 = y^2 - \frac{\tilde{\varepsilon}_2}{2} > y^2 - \tilde{\varepsilon}_2 = 2$.

C We estimate as follows:

$$(x+\epsilon_1)^2 \leq x^2+5\epsilon_1 \leq 2$$

 $(y-\epsilon_2)^2 \geq y^2-4\epsilon_2 > 2$.

Define $M = \max\{a, 1\}$. Suppose $c \in S$. If $c \leq 1$, then $c \leq 1 \leq M$. If $c \geq 1$, then by (05), $c^2 \geq c$, so $c \leq c^2 \leq a \leq M$. This shows S is bounded above by M. By definition, S is bounded below by O.

(4) (a) In (3)(a), we showed $M = \max\{2, 1\} = 2$ is an upper bound for S. Thus $b \le 2$. Since $1 \ge 0$ and $1^2 \le 2$, $1 \le 5$, so $b \ge 1$.

(b) If $b^2 < 2$, $b_y(2) \in \exists e_i \in (0, i) \text{ s.t.}$ $(b+e_i)^2 < 2$. Thus $b+e_i \in S$. This contradicts the fact that b is an upper bound of S.

 $C If b^{2} > 2, by 2C, \exists \epsilon_{2} \epsilon_{0,1} > 5.t.$ $(b-\epsilon_{2})^{2} > 2. Thus, if c > b-\epsilon_{2},$ $c^{2} c(b-\epsilon_{2}) = (b-\epsilon_{2})^{2} > 2,$

so c#S. By Q1, this contradicts that b is the supremum.

(5) We first show liman = 0 if (a1<1. @ Note that, if a=0, then for all E>O and any NER, n=N ensures lan-ol= O<E. Thus, liman=O. Now, suppose that at0. Fix E>O! Note that lan-OlkE (=) |an| < E <=> |a|ⁿ < E <=> n log(lal) < logE since laklensures log(lal) <0</p> (=) $n > \frac{\log \varepsilon}{\log(\ln t)}$. Let $N = \frac{\log \varepsilon}{\log(\ln t)}$. Then n>D ensures lan-OliE, so $\lim_{n \to \infty} a^n = 0$.

We now show $\lim_{n \to \infty} a^n = 1$ if a = 1. Note that if a = 1, then $a^n = 1$ for all n. Fix $\varepsilon > 0$ and choose N = 1. Then n > Nensures $|a^n - 1| = 0 < \varepsilon$.

(b) We conclude by showing an does not converge if $a \leq -1.0$

Suppose for the sake of contradiction
that a converges to some
$$a \in R$$
.
Let $\epsilon = 1$. Then there exists N s.t.
NN ensures $|a^n - a| < |\epsilon > a - |c^n < a^+|$.
For neven, $a^n = |a|^n > |so |0 < a$.
For n odd, $a^n = -|a|^n < -1$, so $a - |<-1 = > a < 0$.
This is a contradiction, since no $a \in R$
can satisfy both $a > 0$ and $a < 0$.

(a) We will show that the minimum of S exists if $a \in \mathbb{Q}$ and does not exist if $a \in \mathbb{R} \setminus \mathbb{Q}$.

Suppose $a \in \mathbb{Q}$. By definition of $S, a \in S$. Furthermore, for any $s \in S, a \leq S$. Thus $\min(S) = a$.

Suppose $a \in \mathbb{R} \setminus \mathbb{Q}$. Assume, for the sake of contradiction, that the minimum of S exists, and $\min(S) = s_0$. Since $s_0 \in S$, we have $s_0 \geq a$. However, since $a \notin \mathbb{Q}$, we must have $s_0 > a$. By density of \mathbb{Q} in \mathbb{R} , there exists $r \in \mathbb{Q}$ so that $s_0 > r > a$. By definition of S, we must have $r \in S$. This contradicts that s_0 was the minimum of S. Thus, the minimum of S must not exist.

(b) We will show that inf(S) = a. By definition of S, a ≤ s for all s ∈ S, so a is a lower bound for S. Suppose m₀ ∈ ℝ is another lower bound of S. Assume for the sake of contradiction that m₀ > a. By density of Q in ℝ, there exists r ∈ Q so that m₀ > r > a. Thus, r ∈ S, which contradicts the definition of m₀ as a lower bound of S. This shows m₀ ≤ a, so a is the greatest lower bound.

7) Let S=(a,b]. • max(s)= b, since by defn, bis the largest element in US of

- · sup(s)=b. Ob is an upper bound for S and since bes, no number smaller than & can be an upper bound. Thus bis the least upper bound.
- . The minimum of S does not exist. Suppose, for the sake of contradiction that min(s)=mo. Since moes, mora. However mota E (amo), so mota ES and mota < mo. This contradicts that no was the smallest element in S.
- · inf(S)=a. a is a lower bound for S. Suppose mora was another lower bound. Since bes, we have mot (a, b]. Furthermore, since. 2 E (amo), we have motor ES and motor <mo

This contradicts that no was a lower bound of S.

(8) By the Archimedean Property, if x>0 and y>0, then there exists nEAU so that nx>y Taking x=1 and y = a gives that there exists n2 = 1N so that n2 > Q. Taking $\chi = a$ and y = l gives that there exists $n_2 \in IN$ so that $n_2 a > l \ll a > \frac{1}{n_2}$. Let $n = \max \{n_1, n_2\}$. Then $n \in \mathbb{N}$ and $\frac{1}{n} \leq \frac{1}{n_2} < \alpha < n_1 < n_1$, which gives the result. (9) Suppose for the sake of contradiction that Q9, there exists nE/N so that n< y=a-b. This implies that there existenen so that bt n < a, which is a contradiction. Therefore, we must have a=b.

~

(b(i) Fix 2>0. Note that Isn-OI=Insin(2n))= in Isin(2n)= n<2 if n> i. Thus, for N= i, we have that, for all n>N, Isn-OI<2. Since 2>0 was arbitrary, this shows lim sn=0.

(i) Fix $\varepsilon > 0$. Note that $|dn - \frac{3}{5}| = |\frac{3n+4}{5n+3} - \frac{3}{5}| = |\frac{3n+4}{5(5n+3)}|$ $= |\frac{3n+4}{5n+3} - \frac{3}{5}| = |\frac{3n+4}{5(5n+3)}|$ $= |\frac{3n+4}{5n+3} - \frac{3}{5}| = |\frac{3n+4}{5(5n+3)}|$ $= |\frac{3n+4}{5n+3} - \frac{3}{5}| = \frac{3(5n+3)}{5(5n+3)}|$ $= |\frac{3n+4}{5n+3} - \frac{3}{5}| = \frac{3(5n+4)}{5(5n+3)}|$ $= |\frac{3n+4}{5n+3} - \frac{3}{5}| = \frac{3(5n+3)}{5(5n+3)}|$ $= |\frac{3n+4}{5n+3} - \frac{3(5n+3)}{5(5n+3)}|$ $= |\frac{3n+4}{5n+3} - \frac{3(5n+3)}{5(5$

(iii) Fix SEIR arbitrary. Let E=2. Suppose E NEIRS.t. V nON, lan-SI<E.

Note that

 $|an-s| = |2cos(n\pi)-s| < \varepsilon \Rightarrow$ $s-\varepsilon < 2cos(n\pi) < s+\varepsilon \Rightarrow$ $s-2 < 2cos(n\pi) < s+2$.

In particular, for n > N even, we have 2 < s+2 => s>0. Similarly, for n > N odd, we have s-2 < -2 => s < 0. Since it is impossible to have both s > 0 and s < 0, we obtain a contradiction.

Thus Y NER, 3 n?Ns.t. lan-sl2E. This shows an does not conver.

a A sequence son convergento a limit set if, VE>0, JNEIRS.t. n7N ensures Isn-s/KE.

(b) A sequence Sn doed not converge to a limit se IR if ∃ ε>0 s.t. for all NER, ∃ n>N s.t. Isn-s12 ε. $\bigcirc Fix \in 0. \text{ Let } N = \frac{4}{2}. \text{ Then } n^{2}N \text{ ensures}$ $\frac{4}{n} < \varepsilon \iff \frac{4n}{n^{2}} < \varepsilon \iff \frac{n+3n}{n^{2}} < \varepsilon \implies \frac{n+3}{n^{2}} < \varepsilon \implies 0$

- $\frac{|n-3|}{n^2} < \varepsilon \Longrightarrow \left| \frac{n-3}{n^2} \right| < \varepsilon \Longrightarrow \left| \frac{n-3}{n^2+q} \right| < \varepsilon \longleftrightarrow \left| \frac{n-3}{n^{2+q}} 0 \right| < \varepsilon.$
- Since 2>0 was arbitrary, this gives the result.

@ Assume, for the sake of contradiction, that sn converges to some SER. Then, for E=1, there exists NER su that n>N ensures

 $|s_n-s| < | \iff s - | < s_n < s + |$ $(=)_{S-1} < (n+1)^2 - 2 < S+1$ \iff S1 | < (n+1)² < S+3

By the lemma following the Archimedean Property, $\exists m \in |N|$ sol-that $m^{2}s+3$. Let k = max(m, N+1). Then $k \ge m^{2}s+3$ and $k^{2}N$. The latter ensures:

 $(k+1)^2 < s+3 => k < k^2 + 2k+1 < s+3$

11)

(a)

We will show a_n converges to a = 7/3. Fix $\epsilon > 0$. Note that

$$\begin{aligned} |a_n - a| &= \left| \frac{7n - 19}{3n + 7} - \frac{7}{3} \right| = \left| \frac{21n - 57}{3(3n + 7)} - \frac{7(3n + 7)}{3(3n + 7)} \right| \\ &= \left| \frac{-106}{3(3n + 7)} \right| < \epsilon \end{aligned}$$

if and only if

$$\frac{108}{3\epsilon} < 3n+7 \iff \frac{108}{3\epsilon} < 3n \iff \frac{108}{\epsilon} < n.$$

Thus, if $N = \frac{108}{\epsilon}$, for all n > N, we have $|a_n - a| < \epsilon$. Since ϵ was arbitrary, this shows $\lim_{n \to +\infty} a_n = a$.

(b)

We will show b_n does not converge. Note that the elements in the sequence b_n are $(\frac{1}{2}, \frac{1}{2}, 0, -\frac{1}{2}, -\frac{1}{2}, 0, \ldots)$, repeating in this way. Assume, for the sake of contradiction, that b_n converges to some $b \in \mathbb{R}$. Then for $\epsilon = \frac{1}{4} > 0$, there exists N so that n > N ensures

$$|b_n - b| < \epsilon \iff b - \epsilon < b_n < b + \epsilon \iff b - \frac{1}{4} < b_n < b + \frac{1}{4}$$

Since there are infinitely many n > N for which $b_n = -\frac{1}{2}$, we see that

$$b-\frac{1}{4}<-\frac{1}{2}\implies b<\frac{-1}{4}.$$

Likewise, since there are infinitely many n > N for which $b_n = \frac{1}{2}$, we see that

$$\frac{1}{2} < b + \frac{1}{4} \implies \frac{1}{4} < b.$$

It is impossible to have both $b < \frac{-1}{4}$ and $\frac{1}{4} < b$. Thus, we have found a contradiction. This shows b_n does not converge.