Homework 3 Solutions Katy Craig ²⁰²⁴ 1) Suppose a=sup(S). By clefinition, a is By definition, a is an upper bound of S. π_{ix} Eso. Then
a-s < a Thun a s must not be an a = ϵ < a . Thus, $a \geq \epsilon$ must not be an upper bound of S. Hence, there exists $s\in S$ sit. $a-\epsilon \geq S$.

Suppose ^a is an upper bound of ^S and for all 270 , 3565 s.t. 52042 ret M be an upper bound of S
Assume, for the sate of contraditotic Assume, for the sake of contradiction
that M2<a. Then E=a-m>0 Thus, $3s\leq s\cdot t$. $s\geq a\cdot s = m$. This contradicts that M was an upper bound Therefore Mza This shows a is the least upper
bound on supremum of S.

$$
Q\n\nQ\n\nWe estimate as $\{e^{i2} \times e^{2} \leq \chi^2 + 2\varepsilon \chi + \varepsilon^2 \leq \chi^2 + 4\varepsilon + \varepsilon^2 \leq \chi^2 + 5\varepsilon \leq \frac{5^{2}}{2} \leq \frac{2}{2} \leq$
$$

(b) Since
$$
\chi^2 < 2
$$
, $\tilde{\epsilon}_1 = 2 - \chi^2 > 0$. Let $\epsilon_1 = \frac{\tilde{\epsilon}_1}{10}$.
Then $\chi^2 + 5\epsilon_1 = \chi^2 + \frac{\tilde{\epsilon}_1}{2} < \chi^2 + \tilde{\epsilon}_1 = 2$.

Since
$$
y^2 > 2
$$
, $\tilde{\epsilon}_2 = y^2 - 2 > 0$. Let $\epsilon_2 = \frac{\tilde{\epsilon}_2}{8}$.
Then $y^2 - 4\epsilon_2 = y^2 - \frac{\tilde{\epsilon}_2}{2} > y^2 - \tilde{\epsilon}_2 = 2$.

$$
(x+e_1)^2 \le x^2+Se_1 < 2
$$

\n $(x+e_1)^2 \le x^2+Se_1 < 2$
\n $(y-Ex_1)^2 \le y^2-4e_2 > 2$.

 $\frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum_{j=1}^{n$

Define M = max {a, 1}. Suppose c ES. $T\ddot{f}$ c \leq l, then c \leq 1 \leq m' Tf c 21, then by (05) , $c^2 \ge c$, so $c \le c^2 \le \alpha \le m$.
Thus shows S is bounded above by M. This shows S is bounded above by M
Bre delinition S is bounded helony by By definition, S is bounded below by O

 $4.$ ω In (3) ω , we showed m = max $\{2, 1\}$ =2 is an upper bound for S. Thus $b = 2$. Since $1^{\frac{1}{2}}0$ and $1^{\frac{2}{5}}=2$, $1 \in S$, so $b = 1$.

 I_{c} b Z_{1} by $Z(C)$ d $E_{1}e(0,1)$ S.t $(b+c_1)^2 < 2$. Thus $b+c_1 \in S$. This contradicts the fact that b is an upper bound of ^S

OIf $b^{2}>2$, by (2) , \exists $\sum_{i=0}^{n} f(c)$, \Rightarrow b- $\sum_{i=0}^{n} f(w)$, if $c > b - \varepsilon_{2}$,
 $c^{2}>c(b-\varepsilon_{2}) \ge (b-\varepsilon_{2})^{2}>2$,

so ces. By Q1, this contradicts
that b is the supremum.

 (5) We first show lima^{n = 0} if lal <1. ω Note that, if $\alpha = 0$, then for all 870 and $\sum_{i=1}^{\infty}$ $N \in \mathbb{K}$, n \wedge ensures $|a^{n}-0|=0$ \leq \geq \sup \sup \sup Now, suppose that a#0. Fix 20° . Note that $|a^{n}-0|<\epsilon$ $\Leftrightarrow |a^n|$ $\leq \leq$ \geq $|a|^n$ $\leq \leq \leq$ \geq $n \log(|a|)^2$ $|o_q$ \leq since lake ensures loggian ≥ 0 $\iff n > \frac{log \epsilon}{log (ln \epsilon)}$, Let $N = \frac{log \epsilon}{log (ln \epsilon)}$. Then $n > 0$ ensures $|a^n-0| < \varepsilon$, so $lim \alpha^n = 0$.

We now show limaⁿ= $|$ if $a = 1$. Note that if $a = 1$, then $a^n = 1$ for all n. $Fix 820$ and choose $N=1$. Then $n>N$ $ensures$ $|a^n - 1| = 0 \leq 2$.

We conclude by showing
cloes not converge if a=1.1 a does not converge $f \alpha \leq -1$

Suppose for the sake of contradiction
that aⁿ converges to some a
$$
\in R
$$
.
Let $\epsilon=1$. Then
then 0 there exists N s.t.
n>N express $|a^{n}-a|2|$ $\epsilon \ge a-1$ $\alpha^{n} \le a^{+}$.
For n even, $a^{n} = |a|^{n} > |s_{0}|$ $|\langle a^{n} \rangle|$ $\le a^{+}$.
For n odd, $a^{n} = -|a|^{n} < -1$, $\epsilon \ge a-1$ ≤ -1 $\ge a < 0$.
This is a contradiction, since no a $\in R$
can satisfy both a > 0 and a < 0.

(a) We will show that the minimum of S exists if $a \in \mathbb{Q}$ and does not exist if $a \in \mathbb{R} \setminus \mathbb{Q}$.

Suppose $a \in \mathbb{Q}$. By definition of S, $a \in S$. Furthermore, for any $s \in S$, $a \leq S$. Thus $\min(S) = a.$

Suppose $a \in \mathbb{R} \setminus \mathbb{Q}$. Assume, for the sake of contradiction, that the minimum of S exists, and $\min(S) = s_0$. Since $s_0 \in S$, we have $s_0 \ge a$. However, since $a \notin \mathbb{Q}$, we must have $s_0 > a$. By density of Q in R, there exists $r \in \mathbb{Q}$ so that $s_0 > r > a$. By definition of S, we must have $r \in S$. This contradicts that s_0 was the minimum of S. Thus, the minimum of S must not exist.

(b) We will show that $\inf(S) = a$. By definition of S, $a \leq s$ for all $s \in S$, so a is a lower bound for S. Suppose $m_0 \in \mathbb{R}$ is another lower bound of S. Assume for the sake of contradiction that $m_0 > a$. By density of Q in R, there exists $r \in \mathbb{Q}$ so that $m_0 > r > a$. Thus, $r \in S$, which contradicts the definition of m_0 as a lower bound of S. This shows $m_0 \le a$, so a is the greatest lower bound.

 $\overline{}$

\Rightarrow Let $S=(a_1b)$. · max(s)=b, since by defn, bis
the largest element in US

- · sup(s)=b. Ob is an upper bound for S and since bes, no number smaller than b can be an upper bound. Thus b is the least upper bound.
- . The minimum of S does not exist. Suppose, for the suke of contendiction that min(s)=mo. $sin\alpha$ m_8eS , $m_8> a$. However $\frac{m_6+a}{2}e(a_1m_0)$ so mota ES and mota <mo. This contradicts that mo who the smallest element in S.
- · inf(S) = a. a is a lower bound for S. Suppose mota was another lower bound. Since bes, we have mota, b). Furthermore, since. $\frac{m_0+a}{2}$ ϵ (a, mo), we have $\frac{m_0+a}{2}$ ϵ \leq and $\frac{m_0+a}{2}$ \leq m_0

This contradicts that mo was a lower bound of S.

(8) By the Archimedean Property, if x 20 and
y 20, then there exists new so that nx 24 Taking x=l and y = a gives that there
exists $n_4 \epsilon/N$ so that $n_1 > a$. Taking x=a and y=1 gives that there
exists Onz EIN so that n2a>1(=>a>tz. Let n=max {n, n} Then nE/N
and $\frac{1}{n} \leq \frac{1}{n} \leq \alpha \leq n, \leq n$, which gives
the result. (9) Suppose for the sake of contradiction that a>b. Then if we define y=a-b, y>0, and by
Q9, there exists nept so that $\frac{1}{n}$ < y=a-b. This implies that there exists nep so that $b^+ \pi < a$, which is a contradiction. Therefore, we must have asb.

 $b)(i)$ Fix EZO. Note that $|S_{n}-0|=|\frac{1}{n}sin(2n)|=\frac{1}{n}|sin(2n)|\leq\frac{1}{n}<\epsilon$ if $n>\frac{1}{\epsilon}$. Thus, for $N=\frac{1}{\epsilon}$, we have that, for all $n>N$, $|sn-0|\leq \epsilon$. Sine 270 was arbitrary this shows $lim_{n \to \infty}$ = 0.

 $(i)F_{ix}$ 270. Note that $\left| \lim_{n \to \infty} \frac{3}{5} \right| = \left| \frac{3n+4}{5n+3} - \frac{3}{5} \right| = \left| \frac{(3n+4)5 - 3(5n+3)}{5(5n+3)} \right|$
= $\left| \frac{11}{5(5n+3)} \right| = \frac{11}{5} \frac{1}{5n+3} \le \frac{11}{25} \cdot \frac{1}{n} \le \frac{1}{2n} < 2$ if $n \geq \frac{1}{2\epsilon}$. Thus, for $N = \frac{1}{2\epsilon}$, we have that, for all $n > N$, $|dn - \frac{3}{5}| \le \epsilon$. Since EZD was corbitrary, this shows $lim dn = \frac{3}{5}$.

(ii) Fix sER arbitrary. Let 2=2. Suppose

Note that

 $|a_{n-s}| = |2cos(n\pi) - s| < \epsilon \Longleftrightarrow$ $S - \Sigma < 2cos(n\pi) < S + \Sigma \Leftrightarrow$ $S - 2 < 2 cos(n\pi)$ < $S + 2$.

 In particular, for $n > N$ even, we have $2 < s + 2 \Rightarrow s > 0$. Similarly, for n N odd, we have $s - 2 < -2 \Rightarrow S \circ \sim 0$. Since it is impossible to have both S >0 and S <0, we obtain a contradiction.

Thus $VNER, \exists n$ Ns.t. $|a_n-s|\geq \epsilon$. This shows an cleas not conver.

A seguence sn converges to a limit
CETRI If YEDO FINERST SEIK It, $\forall \xi>0$ n 7N ensures Isn-skE.

A seguence Sn does not
to a limit se FR if 7 to a limit setR if \exists 2 0 s.t. for all NER, In?N s.t. $|Sn-S|ZS$

 $D Fix$ 270. Let $N = \frac{4}{2}$. Then n?Nensures $\frac{4}{n} < \epsilon \Longleftrightarrow \frac{4n}{n^2} < \epsilon \Longleftrightarrow \frac{n+3n}{n^2} < \epsilon \Longrightarrow \frac{n+3}{n^2} < \epsilon \Longrightarrow$

- $\frac{|n-3|}{n^2} < \epsilon \implies \left|\frac{n-3}{n^2}\right| < \epsilon \implies \left|\frac{n-3}{n^2+q}\right| < \epsilon \implies \left|\frac{n-3}{n^2+q}-O\right| < \epsilon.$
- Since 270 was arbitrary, this gives the result

Assume, for the sake of contradiction.
at Sn converrants from Sel hat Sn canverges to some SEIK $\zeta = 1 + \log_{10} \frac{1}{2}$ Then, for $2=1$, there exists NE/K
su that n>N ensures so that ⁿ N ensures

 $|s_n - s| < | \Leftrightarrow s - 1 < s_n < s + 1$ $5s-1<$ $(n+1)^{2}-2< s+1$ \Leftrightarrow $S11 < (m+1)^2 < S13$

By the lemma following the Archimedean Property, $\exists m^0 \epsilon/N$ so that m ?s+3. et k = max (m, N+1). Then K 2 m 7 s+3 and k m . The latter ensurest

 $(k+1)^{2}$ <S+3=> $k< k^{2}+2k+1$ <S+3

$11)$

(a)

We will show a_n converges to $a = 7/3$. Fix $\epsilon > 0$. Note that

$$
|a_n - a| = \left| \frac{7n - 19}{3n + 7} - \frac{7}{3} \right| = \left| \frac{21n - 57}{3(3n + 7)} - \frac{7(3n + 7)}{3(3n + 7)} \right|
$$

= $\left| \frac{-106}{3(3n + 7)} \right| < \epsilon$

if and only if

$$
\frac{108}{3\epsilon} < 3n + 7 \iff \frac{108}{3\epsilon} < 3n \iff \frac{108}{\epsilon} < n.
$$

Thus, if $N = \frac{108}{\epsilon}$, for all $n > N$, we have $|a_n - a| < \epsilon$. Since ϵ was arbitrary, this shows $\lim_{n \to +\infty} a_n =$ $\mathfrak{a}.$

(b)

We will show b_n does not converge. Note that the elements in the sequence b_n are $(\frac{1}{2}, \frac{1}{2}, 0, -\frac{1}{2}, -\frac{1}{2}, 0, \dots)$, repeating in this way. Assume, for the sake of contradiction, that b_n converges to some $b \in \mathbb{R}$. Then for $\epsilon = \frac{1}{4} > 0$, there exists N so that $n > N$ ensures

$$
|b_n - b| < \epsilon \iff b - \epsilon < b_n < b + \epsilon \iff b - \frac{1}{4} < b_n < b + \frac{1}{4}
$$

Since there are infinitely many $n > N$ for which $b_n = -\frac{1}{2}$, we see that

$$
b-\frac{1}{4}<-\frac{1}{2} \implies b<\frac{-1}{4}.
$$

Likewise, since there are infinitely many $n > N$ for which $b_n = \frac{1}{2}$, we see that

$$
\frac{1}{2} < b + \frac{1}{4} \implies \frac{1}{4} < b.
$$

It is impossible to have both $b < \frac{-1}{4}$ and $\frac{1}{4} < b$. Thus, we have found a contradiction. This shows b_n does not converge.