Homework 4 Solutions @ Katy Craig, 2024 () First, suppose sn is a bounded sequence. Then J'M20 s.t. Isn1 = M V nEN, so -MESNEM UNEN. This shows - Misa lower bound for S and M is an upper bound for S. Thus Sisa bounded set. Next, suppose S is a bounded set. Then S is bounded above and below, so I m, MER s.t. m≤sn≤M VnEN. Lef L=max Elm1, MB. Then $-L \leq -ImI \leq m \leq m \leq m \leq m \leq L$ $\forall n \in N$, So ISNIEL UNEN. This shows shis a bounded sequence. (2)(a)Let $S_n = (-1)^n$, $t_n = (-1)^n$. Then $S_n t_n = 1$ for all nEN. As shown in class, neither the limit of sn nor the limit of the exists. Thus, limosoth = 1 = (limon)limb

(b) Both sequences shand the must converge for the limit of the product to be the product of the limits.

and $\lim_{n \to \infty} t_n = 0$, $\lim_{n \to \infty} -t_n = (-1)(0) = 0$.

© If limosn=0, it is not necessarily true that limotn=0. For example, if sn=0 Vne/N and tn=1 Vne/N, then Isn1≤tn VnE/N and limosn=0, but lim tn=1≠0.

@Fix E=0. Note that, by the reverse triangle inequality, $||t| - |t_n|| \leq |t - t_n|.$

Since "Botn=t, 3 NERS.t. n?N ensures It-tn/<E, hence Ilt/-Itn//E. Since E>O was arbitrary, this showf lim Ital =H.

(b) The converse is not true. Let tn=(-1)ⁿ. Then Itn1=1 is a convergent sequence, but tn is not a convergent sequence.

(5) First, suppose limosn=sfors<a. If we define E= a-s, then E>0. By definition of convergence, there exists NETRs.t. or>N' Ensured Isn=sI<E (=> s=E<sn<stE

Thus n >N ensured Sn <s+ E= a. Hence ENEN: Sn Zaz= E1,2,..., LNJZ. Thus, EnerN: sn=a3 is a finite set.

Next, suppose $\lim_{n \to \infty} sn = -\infty$. Let $M = \min\{-1, a\}$. Then $\exists N s.t.$ $sn \leq M \leq a$ for all $n \geq N$. Thus, $\{n \in \mathbb{N}: sn \geq a\}$ is a finite set.

(b) First, suppose himso tn=t>0. Then himso tn > ±. Applying part (a) with sn=-tn and a=0±, we obtain that ine/N: sn ≥a} = ine/N: -tn≥±} = ine/N: tn ≤ ±} ≥ ine/N: tn < ±} are all finde sets. This shows the result for b=±.

Now, suppose how tn =+00. Then J N s.t. In > N, tn > 1. Thus, EneiN: tn ≤ 13 = EneiN: tn < 13 is finite. This shows the result for b=1.

(By part (D), I b_20 so that th 2 b2

for all but finitely many n and I b2 20 so that sonton = b2 for all but finitely many n. Thus, there exists N1, A2 so that n>N1 ensures tn=b1=0 and nPNZEnswed tusn=bz=20. Thus n° max {N1, N2 ensures sn ZO. This shows EneIN: sn =0} has at most max ?N1, N23 elements.

Since 2>0 was arbitrary, this showy imastr = s = imas Sn.

-

(F) Since
$$L < 1$$
, if we define $a = \frac{L+1}{2}$, then
 $L < a < 1$. By Q6(\bigcirc , $\inf N : |\frac{Snrt}{Sn}|^2 a$ is finite.
Thus, there exists N s.t. n^{N} ensures
 $\frac{Snrt}{Sn} Ka$, or equivelently, $\frac{Snrt(Kalsn)}{Snrt(Kalsn)}$.
We now prove that $\frac{Snl < a^{n-N-1}|Snrt|}{far}$ all $n > N$ using induction. For
the base case of $n = Nt1$, note
that $\frac{Snrt(I = a^{0}|Snrt(I = a^{n-N-1}|Snrt(I))}{Snrt(I = a^{0}|Snrt(I = a^{n-N-1}|Snrt(I))}$.
For the inductive step, assume
 $\frac{Snl < a^{n-N-1}|Snrt(I)}{Snrt(I = a^{n-N-1}|Snrt(I))}$.
For the inductive step, assume
 $\frac{Snl < a^{n-N-1}|Snrt(I)}{Snrt(I = a|Snl < a^{n+1-N-1}, which}$
completes the proof of the inductive step.
Finally, we use that $\frac{Snl < a^{n-N-1}|Snrt(I)}{Snrt(I = 0)}$.
Finally, we use that $\frac{Snl < a^{n-N-1}|Snrt(I = 0)}{Since a < 1}$. Thus, using
that the limit of the product is the
product of the limits, we obtain
 $\frac{1}{n > p} a^{n-N-1}|Snrt(I = 0)$.

(8) By the inequality,

$$|tn^{P}-t^{P}| \leq p \max \{(tn)^{P'}, (t)^{P-i}\}|tn-t|$$

Since the is a convergent sequence,
 $|t|$ is bounded and $\exists M > 0$ s.t.
 $|tn| < M$ for all n . By Question 5,
 $|isolitn| = |t|$. Let $\widetilde{M} = \max(M, |t|)$.
Then the above inequality ensures.
(4) $|tn^{P}-t^{P}| \leq p \widetilde{M}^{P-1}|tn-t|$.
Fix $\epsilon > 0$. Since the convergent of t ,
 $\exists N s.t. n > N$ ensures $|tn-t|^{k} p m^{p-1}$.
Then, by (t^{k}) , $n^{>}N$ ensures
 $|tn^{P}-t^{P}| < \epsilon$. Since $\epsilon > 0$ was
arbitrary, this shows $\lim tn^{P} = t^{P}$.
(9) The correct definition is $@$.
(1, -1, 1, -1, ...), $s = 0$.
Then for $\epsilon = 2$ and all NeTR, $n > N$
ensures $|sn-s| < \epsilon$.

6 Consider sn= n, s=0. For E=0 there is no NER so that n=N ensures 1sn=01<E.

Consider sn=n, s=0. For E=4, Isn-sl<E is not true for all nell.
If lim rn=-a, the result is immediate. Thus, it remains to consider the remaining cases.

Case 1: Suppose how
$$rn = r \in \mathbb{R}$$

Case 1a: If how $rn = r \in \mathbb{R}$.
Case 1b: Suppose how $rn = t \in \mathbb{R}$. Assume for
the sake of contradiction that $t < r$. Let $\varepsilon = \frac{r-t}{2} > 0$.
Then $\exists Nr, Nt s.t. n > Nr$ ensures
 $|rn-r| < \varepsilon$ and $n > Nt$ ensured $|tn-t| < \varepsilon$.
Let $N = \max \delta Nr, Nt \delta$. Then $n > N$ ensured
 $tn < t + \varepsilon = t + \frac{r-t}{2} = \frac{t+r}{2} = r - \frac{r-t}{2} = r - \varepsilon < rn$.
This contradicts that $rn \in tn$ $\forall n \in \mathbb{N}$.
Thus $\lim_{n \to \infty} tn = t \ge r = \lim_{n \to \infty} rn$.
Case 1c: Suppose $\lim_{n \to \infty} tn = -\infty$. Then $\exists N_t s.t$.
 $\forall n > N_t$, $tn < r-1$. There also exists
 $Nr s.t. \forall n > Nt$, $r - 1 < rn$. Thus for
 $N = max \delta Nt, Nr\delta$, $n > N$ ensures

Case 2: Suppose in som = +00. Fix M=0. Then I N S.t. V n=N, M<rn=tn. This shows no sotn=+00.

(1) Suppose sn is increasing. Fix nEN. We will prove m=n => Sm=Sn by induction. Base case: m=n. By definition sm=sn. Inductive step: Suppose m=n and sm=sn. Since it is an increasing sequence, Sm+12Sm2Sn. This shows the inductive step. Now, suppose m=n => Sm=Sn V n,m e/N. Take m=n+1. Then Sn+1= Sn Un E/N. This shows sn is increasing.

12@ Assume for the sake of contradiction that Sn conversoos to some SER. Then IN s.t. VnN, s-1 < sn< s+1. Thus, it is impossible for sn to diverge to +00

> Since, for M=ls+11, there is no Nm S.t. Sn>M=ls+112s+1 & n=Nm. Likewise, it is impossible for sn to diverge to -a since for m=-ls-11, there is no Nm S.t. Sn<m=-ls-11=s-1 & n=Nm.

(b) Suppose h=∞ Sn=+∞. Fix m<0. Then -m>0, so ∃ N s.t. n>N ensures sn>-m =>m>-sn. Thus h=∞ sn=-∞.

Now, suppose into-sn=-00. Fix M>0. Then -M<0, so I N s.t. n>N ensures -sn<-M=> sn>M. Thus into sn=+a.

13)

Case 1: $\lim_{n \to +\infty} s_n \in \mathbb{R}$

Since $t_n = (k, k, k, ...)$ is a sequence that converges to k and s_n is a convergent sequence, by the theorem that the limit of the product is the product of the limits,

$$\lim_{n \to +\infty} k s_n = \lim_{n \to +\infty} t_n s_n = \left(\lim_{n \to +\infty} t_n\right) \left(\lim_{n \to +\infty} s_n\right) = k \lim_{n \to +\infty} s_n$$

Case 2: $\lim_{n\to+\infty} s_n = \pm \infty$ and k = 0Then $ks_n = (0, 0, 0, ...)$ converges to $0 = k \cdot (+\infty) = k \lim_{n\to+\infty} s_n$.

Case 3a: $\lim_{n \to +\infty = +\infty}$ and k > 0

We must show that ks_n diverges to $+\infty$. Fix M > 0. Since s_n diverges to ∞ , there exists N so that n >ensures $s_n > M/k \implies ks_n > M$. This shows $\lim_{n \to +\infty} ks_n = +\infty$.

Case 3b: $\lim_{n \to +\infty = +\infty}$ and k < 0Then $-(ks_n) = (-k)s_n$. By Case 3a, $\lim_{n \to +\infty} (-k)s_n = +\infty$. By Q12(b), this implies $\lim_{n \to +\infty} ks_n = -\infty$.

Case 4a: $\lim_{n \to +\infty} s_n = -\infty$ and k > 0Then $-(ks_n) = k(-s_n)$. By Q12(b), $\lim_{n \to +\infty} -s_n = +\infty$. Thus, Case 3a ensures $\lim_{n \to +\infty} k(-s_n) = +\infty$. Thus, by Q12 again, $\lim_{n \to +\infty} ks_n = -\infty$.

Case 4b: $\lim_{n \to +\infty} s_n = -\infty$ and k < 0Then $-(ks_n) = (-k)s_n$. By Case 4a, $\lim_{n \to +\infty} (-k)s_n = -\infty$. By Q12(b), this implies $\lim_{n \to +\infty} ks_n = +\infty$.