Homework 4 Solutions Katy Craig ²⁰²⁴ (1) First, suppose sn is a bounded sequence. Then \exists 'm20 s.t. $|s_n| \leq m$ \forall ne \mathbb{N} , so $-M \leq sn \leq M$ \forall $n \in \mathbb{N}$. This shows - M is a lower bound for S and M is an upper bound for ^S Thus Sisa bounded set Next, suppose S is a bounded set. Then S is bounded above and below, so I $m, m \in \mathbb{R}$ s.t. $m \in sn \in \mathbb{M}$ \forall $n \in \mathbb{N}$ Let $L = max \{m1, |M|\}$. Then $-L \leq -1$ ml $\leq m \leq s_n \leq M \leq |M| \leq L$ Vn ∞ N s_{v} Isn $F L$ v n ϵN . This shows s_{n} is a bounded $\sum_{i=1}^{n}$ (2) (a) Let $s_n = (-1)^n$, $t_n = (-1)^n$. Then $s_n t_n = 1$ for all $n \in \mathbb{N}$. As shown in class, neither the limit of sn nor the limit of to exists. Thus, $\lim_{n \to \infty} S_n$ to =1 \neq (limsn)linto)

Both sequences sn and tn must converge for the limit of the product to be the product of the limits

Q3)
$$
\circled{S}
$$
 Since $\lim_{n\to\infty} \sin^{-1} \sin \pi$ or $\frac{1}{5}$, for all $\epsilon > 0$,
\nHence exists Na and Nb so that n>Na
\nensures lan-s1 ϵ and n>Nb ensures
\n $\lim_{n\to\infty} \frac{1}{6} \epsilon$. Recall that lan-s1 ϵ is $\frac{1}{6} \epsilon$ is $\frac{1}{6} \epsilon$. Define
\n $\lim_{n\to\infty} \frac{2}{6} \ln \frac{1}{6} \ln \frac{$

$$
\bigoplus
$$
 Apply the square termma, since
- $t_n \leq sn \leq t_n$

and $\lim_{n \to \infty} t_n = 0$, $\lim_{n \to \infty} -t_n = (-1)(0) = 0$.

O If $\lim_{n\to\infty} s_n = 0$, it is not
necessarily true that $\lim_{n\to\infty} t_n = 0$.
For example, if $s_n = 0$ Vne/N
and $t_n = 1$ Vne/N, then $|s_n| \le t_n$. $YnEN and lim_{n\rightarrow\infty}s_{n}=0$, but $lim_{n\rightarrow\infty}t_{n}=1+0$

Fix E 70. Note that, by the revers
brianale inequality, () triangle inequality $|1t| - |t_n| \leq |t - t_n|$.

Since $\lim_{n\to\infty} t_n = t$, J NERs.t. n ?N $ensures$ $|t-tn| < \epsilon$, hence $||t|-|tnl| < \epsilon$. Since 270 was arilytrary, this showy
limitnl =Hl.

(b) The converse is not true. Let $tn=f(N^2)$ then $|tn|=1$ is a convengent sequence a convergent sequence, but the is not ^a convergent sequence

5)@ First, suppose $\frac{lim}{n}$ sn=s for s<a. If ve define E= a-s, then 22
3. Definition of convergen By definition of convergence $enswee$ $|Sm-S|<\epsilon \Leftrightarrow s-\epsilon \leq m \leq +\epsilon$

Thus n ZN ensures Sn < st E = a. Hence $\{neM:_{Sn} \geq a\} \subseteq \{1,2,...,LM\}$. Thus, Ene N : sn ? a finite set.

 $Next, suppose $lim_{n \to \infty} s_n = -\infty$. Let $m = min\{-1, \alpha\}$. Then $J \cap s.t$.$ $sn<\!M\leq\alpha$ for all $n\geq N$. Thus, EneN: sn ? a is a finite set.

 (b) First, suppose $\lim_{n\to\infty} tn = t \ge 0$. Then $n \Rightarrow$ th \geq Applying part \circledcirc with $sn = tn$ and $a = U\frac{r}{2}$ we obtain that $\{n\in\mathbb{N}:$ sn $2a\}$ = $\{n\in\mathbb{N}:$ $-tn$ $2\frac{1}{2}\}$ $=\{n\in\mathbb{N}: t_{n}\in\frac{t}{2}\}\geq\{n\in\mathbb{N}: t_{n}<\frac{t}{2}\}$ are all finite sets. This shows the result for $b = \frac{1}{2}$

 $Now, Suppose $h \to \infty$ in $-\infty$. Then$ It. Vn N, In 71. Thus $\{n\in\mathbb{N}: t_{n}\leq 1\} \stackrel{\cdot}{\geq} \{n\in\mathbb{N}: t_{n}\leq 1\}$ is finite This shows the result for $b = 1$.

 ω By part ω , \exists b. ∞ so that t_n ²b.

For all but finitely many n and
J b270 so that Sntn ^zb2 for all for all but finitely many n and But tinitely mang n. Thus
there exists N1, Ab2 so that there exists N_1 , Ab2 so that ⁿ NI ensures tn 26120 and mNz ensures tnsn 6220 Thus n⁷ max {N1, N2} ensures sn 20. This shows $\{8n \in \mathbb{N}: sn \in \mathbb{C}\}$ has at most moxim, Nz3 elements.

(6) Suppose
$$
\lim_{n \to \infty} S_n = S
$$

\n(a) Fix $\xi > 0$. Since Sm converges to S , there exists N s.t. $n \geq N$ ensures that $|S_n - S| < \xi$.

\nLet $\tilde{N} = \max\{N, m\}$. Then $n \geq N$ converges to $\tilde{N} = \max\{N, m\}$.

$$
|tn-s| = |s_n - s| < \ell
$$
\nSince $2 > 0$ was arbitrary, this show
\n
$$
\lim_{n \to \infty} t_n = s = \lim_{n \to \infty} s_n
$$
.\n\n(b) Fix $2 > 0$. Since s_n converges to s ,
\nthere exists N s.t. $n > N$ ensures
\n
$$
|s_n - s| < \ell
$$
.\n\nSince $n > N$ implies $n + m > N$, we have
\n
$$
|t_{n} - s| = |s_{n + m} - s| < \ell
$$
.

Since 200 was arbitrary, this showy $lim_{n\to\infty}$ t_{n} = $s = \frac{lim_{n\to\infty} }{n}$ Sn

Since
$$
L \leq 1
$$
, if we define $a = \frac{L+1}{2}$. Then $L \leq a \leq 1$. By $Q6@$, $înem/|Im \frac{Im \cdot H}{Im}||2$ as is finite.

\nThus, then exists, N s.t. $n \geq N$ ensures that $lim_{m \to \infty} \frac{Im \cdot H}{\leq \infty}$.

\nWe now prove that $Im |a^{-n-N-1}|$ sums. For the $lim |a^{-n-N-1}|$ and $lim |b^{-n}||2$ is true.

\nSo we have that $Im |a^{-n-N-1}|$ such that $lim |a^{-n-N-1}|$ is true.

\nFor the inductive step, assume $lim |a^{-n-N-1}|$ is true.

\nFor the inductive step, assume $lim |a^{-n-N-1}|$ is true.

\nFor the inductive step, assume $lim |a^{-n-N-1}|$ is true.

\nConplete's the proof of the inductive step.

\nFinally, we use that $lim_{n \to \infty} \frac{Im \cdot H}{\leq \infty}$.

\nFor all $lim_{n \to \infty} \frac{Im \cdot H}{\leq \infty}$ is true.

\nFor all $lim_{n \to \infty} \frac{Im \cdot H}{\leq \infty}$ is true.

\nFor all $lim_{n \to \infty} \frac{Im \cdot H}{\leq \infty}$ is true.

\nFor all $lim_{n \to \infty} \frac{Im \cdot H}{\leq \infty}$ is true.

\nFor all $lim_{n \to \infty} \frac{Im \cdot H}{\leq \infty}$ is true.

\nFor all $lim_{n \to \infty} \frac{Im \cdot H}{\leq \infty}$ is true.

\nFor all $lim_{n \to \infty} \frac{Im \cdot H}{\leq \infty}$ is true.

\nFor all $lim_{n \to \infty} \frac{Im \cdot H}{\leq \infty}$ is true.

\nFor all $lim_{n \to \infty} \frac{Im \cdot H}{\leq \infty}$ is true.

 $\lim_{n \to \infty} a^{n \times N}$ $|S_{N+1}| = \lim_{n \to \infty} a^{n}$ α^{n-1} $|S_{N+1}| = C$

\n8 By the inequality,
\n
$$
|tr^2 + Pr| \leq p \text{ max} \{tr^p^{-1}(t)^{p-1}\} |tr^2|
$$

\n $\text{Since } tr_1 \text{ is a convergent sequence, } \text{if } t \text{ is bounded and } \text{if } m >0 \text{ s.t. } \text{if } t \text{ is bounded and } \text{if } m >0 \text{ s.t. } \text{if } t \text{ is bounded and } \text{if } m >0 \text{ s.t. } \text{if } t \text{ is bounded and } \text{if } m >0 \text{ s.t. } \text{if } t \text{ is bounded, } \text{if } m >0 \text{ is not even, } \text{if } t \text{ is even, } \text{if } m >0 \text{ is even, } \text{if } t \text{ is even, } \text{if } m >0 \text{ is even, } \text$

 \bigoplus Consider $sn=\frac{1}{n_1}s=0$. For $\epsilon=0$ there is no NER so that n IN ensures $|s_{n} - 0| < \epsilon$.

 $\omega_{\rm{eff}}$

Consider sn⁼ \tilde{n} , 50. For $|Sn-S| \leq E$ is not true for all $n \in \mathbb{N}$ If $\lim_{n\to\infty} r_n = -\infty$, the result is immediate Thus, it remains to consider the remaining cases

Case 1: Suppose
$$
h_{\infty}^{k} \rightarrow n = r \in \mathbb{R}
$$

\nCase 1a: If $h_{\infty}^{k} \rightarrow h_{\infty}^{k} + \cdots$, we are done.

\nCase 1b: Suppose $h_{\infty}^{k} \rightarrow h_{\infty}^{k} + \cdots$ then $h_{\infty}^{k} \rightarrow h_{\infty}^{k} \rightarrow h_{\infty}^{k}$.

\nThen $\exists N_{r}, N_{r} \leq t$. In $2N_{r}$, we have $1 + \frac{e^{r-t} \cdot 2}{2} \rightarrow 0$.

\nThen $\exists N_{r}, N_{r} \leq t$. In $2N_{r}$ is the result of $1 + \frac{1}{2} \leq t$.

\nLet $N = \max \{N_{r}, N_{r}\}$. Then $n \geq N$ ensure that $h_{n} < t_{r} \leq t_{r} \leq t_{r} \leq \frac{t_{r}}{2} = r - \frac{r_{r}}{2} = r$

tan < r - 1 < r. ,
Again, This contradicts that r_n ∈ t_n then the m
Thus
$$
\lim_{n \to \infty} t_n = -\infty
$$
 is impossible.

 $Case2$ Suppose $\lim_{n\to\infty}$ $m=+\infty$. Fix m =0. Then \exists N s.t. V nzN, M<m=tn. This $shows$ $\frac{lim}{n}$ stn=100.

WSuppose sn is increasing. Fix $n \in \mathbb{N}$. We will prove $m^2n = 5m^2$ by induction Base case: m=n. By definition sm=sn Inductive step: Suppose m3n and Sm3Sn. Since it is an increasing sequence, sm+1²Sm²Sr
This chanse the influstable these This shows the inductive step. Now, suppose m3n => Sm3Sn V n,m e/N. Take $m = n + 1$. Then $Sn+1 \geq Sn$ $Vn \in [N]$. This shows Sn is increasing.

Assume for the sake of contradiction that
n converges to some UsER. Then \exists N Sn converges to some SER. Then JN
ct Weeder s-1 < c < c + 1 Then id s.t. $\forall n \forall N, s-1 \leq sn \leq s+1$. Thus, it is impossible for sn to diverge to too

> Since, for $m = |s+1|$, there is no Nm $s.t.$ $sn = M = |s+1| \geq s+1$ $\forall n = Nm$. Likewise, it is impossible for sn to diverge to $-\infty$ since for $m = -|s - l|$, there is no Nm s.t. $Sn_m=1s-11 \leq s-1$ $W_m>\widetilde{N}_{m}$.

 ω Suppose $lim_{n \to \infty}$ Sn= + ∞ . Fix $m < 0$. Then $-m > 0$, so \exists N s.t. $n > N$ ensures $sm > m \Rightarrow m > -s_n$. Thus $lim_{n \to \infty} s_n = -\infty$.

Now, suppose $\lim_{n \to \infty} -sn = -\infty$. Fix $M > 0$. Then $-M < 0, S_0$ $\exists N s.t. n > N e$ nsures $-5n$ <-M=> sn >M. Thus $lim_{n\to\infty}$ sn =+a.

$13)$

Case 1: $\lim_{n\to+\infty} s_n \in \mathbb{R}$

Since $t_n = (k, k, k, ...)$ is a sequence that converges to k and s_n is a convergent sequence, by the theorem that the limit of the product is the product of the limits,

$$
\lim_{n \to +\infty} k s_n = \lim_{n \to +\infty} t_n s_n = \left(\lim_{n \to +\infty} t_n\right) \left(\lim_{n \to +\infty} s_n\right) = k \lim_{n \to +\infty} s_n.
$$

Case 2: $\lim_{n\to+\infty} s_n = \pm\infty$ and $k=0$ Then $ks_n = (0, 0, 0, ...)$ converges to $0 = k \cdot (+\infty) = k \lim_{n \to +\infty} s_n$.

Case 3a: $\lim_{n\to+\infty^{-}+\infty}$ and $k>0$

We must show that ks_n diverges to $+\infty$. Fix $M > 0$. Since s_n diverges to ∞ , there exists N so that $n >$ ensures $s_n > M/k \implies ks_n > M$. This shows $\lim_{n \to +\infty} ks_n = +\infty$.

Case 3b: $\lim_{n\to+\infty^{-}+\infty}$ and $k<0$ Then $-(ks_n) = (-k)s_n$. By Case 3a, $\lim_{n\to+\infty} (-k)s_n = +\infty$. By Q12(b), this implies $\lim_{n\to+\infty} ks_n =$ $-\infty$.

Case 4a: $\lim_{n\to+\infty} s_n = -\infty$ and $k > 0$ Then $-(ks_n) = k(-s_n)$. By Q12(b), $\lim_{n\to+\infty} -s_n = +\infty$. Thus, Case 3a ensures $\lim_{n\to+\infty} k(-s_n) =$ $+\infty$. Thus, by Q12 again, $\lim_{n\to+\infty} ks_n = -\infty$.

Case 4b: $\lim_{n\to+\infty} s_n = -\infty$ and $k < 0$ Then $-(ks_n) = (-k)s_n$. By Case 4a, $\lim_{n\to+\infty} (-k)s_n = -\infty$. By Q12(b), this implies $\lim_{n\to+\infty} ks_n =$ $+\infty$.