MATH 117: HOMEWORK 5

Due Friday, February 16th

Questions followed by * are to be turned in. Questions without * are extra practice. At least one extra practice question will appear on each exam.

Question 1

In HW4, Q7, you considered a sequence s_n satisfying $s_n \neq 0$ for all $n \in \mathbb{N}$ and for which the limit $\lim_{n \to +\infty} \left| \frac{s_{n+1}}{s_n} \right| = L$ exists. You showed that, if L < 1, then $\lim_{n \to +\infty} s_n = 0$.

Now prove that if L > 1 (which includes the possibility $L = +\infty$), then $\lim |s_n| = +\infty$.

Hint: Explain why you can apply HW4, Q7, to the sequence $t_n = \frac{1}{|s_n|}$.

Question 2*

Define a sequence s_n as follows: $s_1 = 1$ and, for $n \ge 1$, $s_{n+1} = \frac{1}{3}(s_n + 1)$.

- (a) Use induction to prove that $s_n \ge 1/2$ for all n.
- (b) Use the definition of the sequence and part (a) to show that the sequence is decreasing.
- (c) Prove that $\lim s_n = s$ for some $s \in \mathbb{R}$.
- (d) Use HW4 Q6(b) to prove that $\lim_{n \to +\infty} s_n = \lim_{n \to +\infty} s_{n+1}$.
- (e) Use part (d), the definition of s_n , and the limit theorems to find the value of s.

Question 3*

Let s_n be an increasing sequence of positive numbers and define $\sigma_n = \frac{1}{n}(s_1 + s_2 + \dots + s_n)$. Prove σ_n is an increasing sequence.

Question 4

Suppose $\lim t_n > 0$ and $\lim s_n = +\infty$ Prove that $\lim s_n t_n = +\infty$. (Hint: Use HW4, Q5.)

Question 5

Suppose $a < b + \epsilon$ for all $\epsilon > 0$. Prove that $a \le b$. (Compare to HW1 Q3 and HW3 Q9.)

Question 6*

- (a) Given a nonempty subset $S \subseteq \mathbb{R}$ and k > 0, let $kS = \{ks : s \in S\}$. Prove that $\sup(kS) = k \sup(S)$. You may use the fact that, for any k > 0, $k \cdot (+\infty) = +\infty$ and $(-k) \cdot (+\infty) = -\infty$.
- (b) For k > 0, prove that $\limsup(ks_n) = k \limsup s_n$.
- (c) How does the result of part (a) change when k < 0? Prove it.

Question 7*

In class, we defined that a sequence s_n of real numbers *converges* to some $s \in \mathbb{R}$ provided that, for all $\epsilon > 0$, there exists $N \in \mathbb{R}$ so that n > N ensures $|s_n - s| < \epsilon$.

Prove that the above definition is equivalent to the following definition: for all $\epsilon > 0$, there exists $N \in \mathbb{R}$ so that $n \ge N$ ensures $|s_n - s| < \epsilon$.

Question 8

Prove $\limsup |s_n| = 0$ if and only if $\lim s_n = 0$.

Question 9

Given a sequence s_n , prove that $\limsup |s_n| < +\infty$ if and only if s_n is bounded.

Question 10*

Determine whether the following statements are true or false. If they are true, prove them. If they are false, give a counterexample and justify it.

- (a) If a sequence s_n satisfies $\limsup s_n = 2$, then $s_n > 1.99$ for all n large enough.
- (b) If a sequence s_n satisfies $\limsup s_n = b$, then $s_n \leq b$ for all n large enough.

Question 11*

Give examples of...

- (a) A sequence x_n of irrational numbers having a limit that is a rational number.
- (b) A sequence r_n of rational numbers having a limit that is an irrational number.

Justify your answers.

Question 12*

Let s_n and t_n be the following sequences that repeat in cycles of four:

$$s_n = (0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, \dots)$$

$$t_n = (2, 1, 1, 0, 2, 1, 1, 0, 2, 1, 1, 0, 2, 1, 1, 0, 2, \dots).$$

Compute the following quantities. You do not need to justify your answer.

- (a) $\liminf s_n$
- (b) $\limsup s_n$
- (c) $\liminf t_n$
- (d) $\limsup t_n$

- (e) $\liminf s_n + \liminf t_n$
- (f) $\liminf s_n + \limsup t_n$
- (g) $\limsup s_n + \limsup t_n$
- (h) $\limsup(s_n t_n)$
- (i) $\liminf(s_n + t_n)$
- (j) $\limsup(s_n + t_n)$
- (k) $\liminf(s_n t_n)$

Pay attention to the above examples where we see that the liminf and limsup of the sum/product is not necessarily equal to the sum/product of the liminf and limsup.