Homework 5 Solutions KatyCraig ²⁰²⁴ Suppose $L > 1$. Define bn^2 Isn1, and note that $\lim_{t\to\infty} \left|\frac{\text{tn+1}}{\text{tn}}\right| \frac{Q}{m}$ $\lim_{t\to\infty} \frac{\text{tn+1}}{\text{kn}} = \lim_{t\to\infty} \frac{\text{lsn}}{\text{lsn+1}}$ For the sequence $\frac{15nt^{2}1}{5n!}$, the assumption that $sn \neq 0$ $\forall n$ ensures the denominator is not zero We also know that the denominator converges and its limit is L>1, hence nonzero. Therefore, by the fact that the limit of a quotient is the
inotient of the limits, $\lim_{t\to\infty}|\frac{t-1}{t}$ quotient of the limits, $\frac{0}{m} \left(\frac{1}{2m} \right) = \frac{1}{2}$ Since by definition $tn \neq 0$ on, and the fact that $L>1$ ensures $\frac{|\mathsf{Im}|\frac{\mathsf{Im}\mathsf{H}}{\mathsf{Im}}|}{\mathsf{Im}|\mathsf{Im}|}$ pingHW4 ⁰⁷ we conclude that $\lim_{n \to \infty} t_n = 0$. Since t_n is a sequence of positive numbers, by the theorem from class, $\lim_{t \to \infty} \frac{1}{t} \lim_{t \to \infty} |\sin |\pi t_0|$ $B(x)$ $\leq C(x)$ $\leq C$ \leq \leq Inductive step: Suppose sn ² 2. We aim to show snti $\frac{2}{3}$. By definition Snti slsn^t
Since $sn^2\frac{1}{3}$, snt $\left(\frac{2\frac{31}{3}}{3}\right)$ so $S_{n+1} = \frac{1}{3}(S_{n+1}) = \frac{1}{3} \cdot \frac{3}{2} = \frac{1}{2}$

This completes the proof. We aim to show Snti $5n$, for all nell $\mathcal{B}_{\mathcal{U}}$ part ω , \mathcal{S}_{n} ² $\frac{1}{2}$, so $\frac{1}{3}$ sm² $\frac{1}{3}$. Thus by definitionof the \int $S_{m+1} = \frac{1}{3}(S_{m}+1) = \frac{S_{n}}{3} + \frac{1}{3} \leq \frac{S_{m}}{3} + \frac{2}{3}S_{n} = S_{n},$ which completes the proof. (c) Since sn is a decreasing sequence, S_1 2 Sn \forall ne/N. Since $S_n \geq 0 \frac{1}{2}$ \forall ne/N. we have $\frac{1}{2} \leq sn \leq s_1 = 1$ HneN. Thus Since all bounded monotone Geguenas $\begin{array}{c}\n\text{Jer} \\
\text{d} \\
\text{F}\n\end{array}$ converge, $\lim_{n\to\infty}$ sn²S for some $9e/k$ This is an immediate consequence HWY 60 for $m=1$. (e) By part (d) and the limit theorems, $S = \lim_{n \to \infty}$ $S_{n+1} = \lim_{n \to \infty} \frac{1}{3}(S_{n}+1) = \frac{1}{3}(S+1)$.

Thus,
$$
\frac{2}{3} s = \frac{1}{3}
$$
, so $s = \frac{1}{2}$.

We must show $S_{n+1} = \frac{1}{n+1} (S_1 + S_2 + ... + S_{n+1})^2 \frac{1}{n} (S_1 + S_2 + ... + S_n) = S_{n}$ which is equivalent to showing
 $s_1t s_2t = 1$ sn+ $\binom{1}{2} \frac{n+1}{n}(s_1t s_2t - t s_1) = (\sqrt{\frac{1}{n}})s_1t + s_2t$ $=$ $S_1 + + S_2 + S_3 + S_4$ Subtracting sit tsn from both sides shows
this is equivalent to showing $snr_1 \geq \frac{1}{n}\Psi s_1 + ... + s_n$). Multiplying both sides by n_j this is equivalent to $n!Sn+2S+1$. Since Sn is increasing, Sn+1² Si V i=1,--,n which gives the result

Take N=max (N+,Ns).

 $5n$ ² /M

Then for all $n > N$, $tn > N$ and $sm>19/mt$, Si tnsn M

 $SINC$ $W170$ was this shows lim tnsn=tos.()

(5) Assume, for the sake of contradiction, that a b. Define ϵ = a -b¹>0. Then $b+\varepsilon$ = $b+\varepsilon-b$) = a. This contradicts our assumption that a slotz for all 20 . Thus, we must have $a \leq b$.

\n① Case 1: `sup(s) = +∞`. Assume, `for the sake of` contradiction, that `m` is an upper bound.
\n for kS. Then
$$
s \leq \frac{m}{k}
$$
 `uses`, which is a contradiction.
\n Thus, `sup(kS) = +∞`.\n

(2022: sup(s)
$$
\in R
$$
. Sine sup(s) is an upper
bound for S, s = sup(s) $\forall s \in S \Rightarrow ksekey(s)$
 $\forall s \in S \Rightarrow ksup(s)$ is an upper bound for KS.
Furthermore (S) M is another upper bound of kS,
then $\frac{m}{k}$ is an upper bound of S, so sup(s) $\in \frac{m}{k}$
 \Rightarrow key(s) $\leq m$. This shows key(s) is the least
upper bound of kS.

FIB Ksm Isosup ks ⁿ ⁱ n N ^I Eso ^ksup sn non Ifan converges ^I ^k limosuplayints this is because limit of product is product of limits If liman to it ^K is ⁰⁴ IME Sn If l im an ^o it is 44 and HW4 010

O If $c < 0$, -c = 0. Thus, for any TSR
inf(cT) = -sup(-cT)= -(-c)sup(T) =c syp(T). Thus $\frac{1}{c}$ inf(cT)=sup(T).
Fix k<0 and S=R. Let²⁴T = kS and c = k. Then $S=\frac{1}{K}T$. Thus, $sup(kS) = sup(T) = kinf(XT) = kinf(S).$

(7) Call the first definition DEF1 and the
second DEF2. Suppose sn converges by
DEF1. Fix 820. DEF1 en sures N s.t. $n>N \Rightarrow |s_{n-s}| < \epsilon$. Let $\widetilde{N} = N+1$. Then $n \geq \widetilde{N} \Rightarrow |s_n-s| < \epsilon$. Thus, sn converges by DEF2.

Next, suppase sn converges by DEF 2. Fix 200 DEF2 ensures $\frac{0}{0}$ $\frac{1}{0}$ $\frac{1}{0}$ s.t. $n \ge 0$ \Rightarrow $|Sn-S|<\epsilon$. Thus $n>N =$ $|Sn-S|<\epsilon$. Thus, so converges by DEF1.

8) First, suppose limsn=0. By HW3, Q4,
limlsnl=0, so limsup lsnl=liming (snl=limlsnl=0. Now suppose lineup Isn1=0. By definition, this implies lime an = 0, whether a_N ⁼ sup {Isnl: $n > N_1$. Fix $2 > 0$, and choose Nosothat $N>N_0$ ensures $|a_N-0| < \epsilon \Leftrightarrow |a_N|^2 \epsilon$. E) an < 2, since an is nonnegative. In particular, april <2, so by definition of ano, we have that n>No+1 ensures 18n152. Therefore Line sn=0. 9) Assume sn is a bounded sequence. Then \exists Mo s.t. Isnl= m_s $\forall 0n \in \mathbb{N}$. Hence $sup_{\{s\}}\{[s_{n}]: n > N\} \leq m_{o}$ YNE/N . $B_{Y}HW4,Q1$
 $\overline{Q1}$
 $\overline{M}_{3\infty}Sup\$ $S_{15}N1:117N$ $S_{15}S_{16}$, so λ $limsup_{n\rightarrow\infty} |sin|$ $\leq M_{0}$ $<$ $+\infty$.

Now, assume knsup Isnl<100. Recall that $limsup_{n\to\infty}$ $|sn| = lim_{N\to\infty} sup_{s}$ $sup_{n\to\infty}$ $\{sn! : n \geq N\}$ an. Since an is a convergent segmence,
it is bounded, and \exists M. s.t. KNEM. Y NEM. In particular, $|a_1|$ = $m_0 \Leftrightarrow$ $|sup\|sni:n>13|$ = m_0

So
$$
1 \le n \le x
$$
 for $\{1, 1, 0\}$. Thus $\{1, 1, 0\}$ is a bounded sequence.

\n(1) (a) False. Consider: $5n = (-1)^{n}2$.

\nThen $\lim_{n \to \infty} \frac{1}{n} = \lim_{n \to \infty} \frac{1}{2} = 2$.

\nHowever, all odd elements of $\{1, 2, 3, 2, 5, 2,$

Claim: lim xn=0. We must show that

for all E ?0, there exists N s.t. n > 1
ensures /xn/<E. Note that $|\chi_n| = |\frac{\sqrt{2}}{n}| = \frac{\sqrt{2}}{n} < \epsilon \Leftrightarrow \frac{\sqrt{2}}{2} < n$ Therefore, for all 250 , if we take $N = \frac{dE}{E}$ then for all n sn, $|xn| < \epsilon$.

Define $\begin{array}{c} \text{11121...} \\ \text{first} \\ \text{4901} \\ \text{700} \\ \text{80} \\ \text{700} \\ \text{80} \\ \text{90} \\$ approximation of ⁵² Or more precisely, we define
M by M=[12 10m]/10m, where Lal in by rn=[12.10"]/10", where Last represents the largest integer less than or equal to a Then $\tilde{r}_n \in \mathbb{Q}$ $Clain:lim_{n\geq0}r_{n} = 52$. Note that $Im - \sqrt{2} = 10^{-n} L^2 10^{n} - \sqrt{2} 10^{n} \le 10^{-n}$ and $10^{-n} < \epsilon \Leftrightarrow \frac{1}{\epsilon} < 10^{n} < \epsilon$ log $\frac{1}{\epsilon} < r$ Therefore, for all 200 , it we take $N = log_{10} \frac{1}{\epsilon}$, then for all $n > N$, $|r_{n} - |_{2}^{3}| < \epsilon$

