Math 117: Homework 6

Due Friday, February 23rd at 11:59pm

Questions followed by * are to be turned in. Questions without * are extra practice. At least one extra practice question will appear on each exam.

Question 1*

Consider the sequences defined as follows:

$$
a_n = (-1)^{n+1}
$$
, $b_n = -\frac{1}{n}$, $c_n = 2n$.

- (a) For each sequence, give an example of a monotone subsequence.
- (b) For each sequence, give its set of subsequential limits. Justify your answer.
- (c) For each sequence, give its lim inf and lim sup. Justify your answer.
- (d) Which of the sequences converges? Diverges to $+\infty$? Diverges to $-\infty$? (You do not need to justify your answer.)
- (e) Which of the sequences is bounded? (You do not need to justify your answer.)

Question 2

- (a) State the definition of convergence for a sequence s_n to a limit s.
- (b) State what it means for a sequence s_n to not converge to a limit s by negating the definition from part (a).
- (c) Suppose that s_n does not converge to $s \in \mathbb{R}$. Prove that there exists $\epsilon > 0$ and a subsequence s_{n_k} so that $|s_{n_k} - s| \geq \epsilon$ for all k.

Question 3*

One can show that the set of rational numbers $\mathbb Q$ can be listed as a sequence r_n . The exact procedure is a little tedious, but you can get an idea of how it works by considering the below diagram from the textbook. For example, $r_1 = 0, r_2 = 1, r_3 = 1/2$, and so on. Note that some numbers, such as −1, are included multiples times.

- (a) For any $\epsilon > 0$ and $a \in \mathbb{R}$, show that the set $\{r \in \mathbb{Q} : |r a| < \epsilon\}$ contains infinitely many elements. (Hint: Use denseness of the rationals.)
- (b) Let r_n be the sequence of rational numbers. Use part (a) to show that for any $a \in \mathbb{R}$, there exists a subsequence r_{n_k} that converges to a. (**Hint**: Use part (a) to show that the set ${n \in \mathbb{N} : |r_n - a| < \epsilon}$ is infinite.)
- (c) Let r_n be the sequence of rational numbers. Show that there exists a subsequence r_{n_k} satisfying $\lim_{k\to+\infty} r_{n_k} = +\infty.$

Background on Infinite Series

In calculus, you encountered infinite series of the form

$$
\sum_{k=1}^{\infty} a_k = a_1 + a_2 + a_3 + \dots
$$

In fact, these are just limits of sequences. In particular, if we define the sequence

$$
s_n = \sum_{k=1}^n a_k = a_1 + a_2 + \dots + a_n
$$

to be the sum of the first n terms of the series, then we define the value of the infinite series to be

$$
\sum_{k=1}^{\infty} a_k = \lim_{n \to +\infty} s_n.
$$

DEFINITION 1. Given a series $\sum_{k=1}^{\infty} a_k$, define the sequence $s_n = \sum_{k=1}^n \sum_{k=1}^n a_k$, converges to a number L if and only if the sequence s_n converges to L **EFINITION 1.** Given a series $\sum_{k=1}^{\infty} a_k$, define the sequence $s_n = \sum_{k=1}^n a_k$. Then the series $\sum_{k=1}^{\infty} a_k$ converges to a number L if and only if the sequence s_n converges to L. Likewise, the series diverges to $+\infty$ or $-\infty$ if and only if the sequence s_n diverges to $+\infty$ or $-\infty$.

Question 4* (Cauchy criterion)

Recall that a sequence s_n is a *Cauchy sequence* if

for all $\epsilon > 0$, there exists $N \in \mathbb{R}$ so that $n, m > N$ ensures $|s_n - s_m| < \epsilon$.

(a) Prove that the following is an equivalent definition of a Cauchy sequence:

 s_n is a Cauchy sequence if, for all $\epsilon > 0$, there exists $N \in \mathbb{R}$ so that $n > m > N$ ensures $|s_n - s_m| < \epsilon$.

(b) Prove the following theorem about series, known as the Cauchy criterion.

THEOREM 1 (Cauchy Criterion). A series $\sum_{k=1}^{\infty} a_k$ is convergent if and only if

for all
$$
\epsilon > 0
$$
 there exists $N \in \mathbb{R}$ so that $n > m > N$ ensures $\left| \sum_{k=m+1}^{n} a_k \right| < \epsilon$.

Page 2 of ?? ©Katy Craig, 2024, Math 117

(c) Now use Theorem 1 to prove the following corollary:

COROLLARY 2. If a series $\sum_{k=1}^{\infty} a_k$ is convergent, then $\lim_{k \to +\infty} a_k = 0$.

(Hint: take $n = m + 1$ in the theorem from part (a).)

Question 5

(a) Prove the following by induction: for $a \neq 1$,

$$
\sum_{i=0}^{m-1} a^i = 1 + a + a^2 + \dots + a^{m-1} = \frac{1 - a^m}{1 - a}
$$

.

(b) Use part (a) to show that

$$
\sum_{i=n}^{m-1} a^i = a^n + a^{n+1} + \dots + a^{m-2} + a^{m-1} = \frac{a^n - a^m}{1 - a}.
$$

(Hint: $\sum_{i=n}^{m-1} a^i = \sum_{i=0}^{m-1} a^i - \sum_{i=0}^{n-1} a^i$.)

(c) Recall from HW2 Q3 that

$$
\left|\sum_{i=1}^n a_i\right| = |a_1 + a_2 + \dots + a_n| \leq |a_1| + |a_2| + \dots + |a_n| = \sum_{i=1}^n |a_i|.
$$

Let s_n be a sequence such that $|s_{n+1} - s_n| \leq 4^{-n}$ for all $n \in \mathbb{N}$. Use part (b) and the above inequality to prove s_n is a Cauchy sequence.

(d) Does the sequence from part (c) converge? Justify your answer.

Question 6* (decimal expansions)

In this problem you will show that any number that can be represented as a nonnegative decimal expansion can be thought of as the limit of a bounded increasing sequence of real numbers. Since all bounded monotone sequences converge, this guarantees that any decimal expansion you can imagine represents (converges to) a real number.

Suppose we are given a decimal expansion $K.d_1d_2d_3d_4\ldots$, where K is a nonnegative integer and each $d_j \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$. Let

$$
s_n = K + \frac{d_1}{10^1} + \frac{d_2}{10^2} + \dots + \frac{d_n}{10^n}.
$$

- (a) Show s_n is an increasing sequence. (This is almost obvious. Your proof should be short.)
- (b) Use the result from Q5(a) to prove that $\frac{9}{10} + \frac{9}{10^2} + \cdots + \frac{9}{10^n} = 1 \frac{1}{10^n}$.
- (c) Use part (b) to prove that s_n is a bounded sequence.
- (d) Since $0.9 = 0.999...$ and 1 are both decimal expansions, by what you have shown, they both correspond to a real number. Use the hint from part (b) to show that they actually correspond to the same real number.

On previous homework/practice quizzes you proved the following results:

$$
\lim_{n \to +\infty} r^n = \begin{cases} 0 & \text{if } |r| < 1 \\ 1 & \text{if } |r| = 1 \\ +\infty & \text{if } r > 1 \\ \text{does not exist} & \text{if } r \le -1, \end{cases}
$$

and

for
$$
r \neq 1
$$
, $\sum_{k=1}^{n} r^k = \frac{1 - r^{n+1}}{1 - r}$.

- (a) Prove that for $|r| < 1$, $\sum_{k=1}^{\infty} r^k = \frac{1}{1-r}$.
- (b) Prove that for $|r| \geq 1$, $\sum_{k=1}^{\infty} r^k$ does not converge. (**Hint**: Use Corollary 2 from Q4.)

Question 8*

Let s_n be a sequence of nonnegative numbers, and for each n define $\sigma_n = \frac{1}{n}$ $\frac{1}{n}(s_1 + s_2 + \cdots + s_n).$

(a) Show $\liminf s_n \leq \liminf \sigma_n \leq \limsup \sigma_n \leq \limsup s_n$. (**Hint:** For the first inequality, show that $M > N$ implies

$$
\inf\{\sigma_n : n > M\} \ge \left(1 - \frac{N}{M}\right) \inf\{s_n : n > N\}.
$$

For the last inequality, show first that $M > N$ implies

$$
\sup\{\sigma_n : n > M\} \le \frac{1}{M}(s_1 + s_2 + \dots + s_N) + \sup\{s_n : n > N\}.
$$

- (b) Show that if $\lim s_n$ exists, then $\lim \sigma_n$ exists and $\lim \sigma_n = \lim s_n$.
- (c) Give an example for which $\lim_{n \to \infty} \sigma_n$ exists but $\lim_{n \to \infty} s_n$ does not exist.

Question 9

Suppose s_n and t_n are bounded sequences.

- (a) Prove that $\limsup s_n + t_n \leq \limsup s_n + \limsup t_n$.
- (b) Give an examples of bounded sequences s_n and t_n for which $\limsup s_n + t_n < \limsup s_n +$ $\limsup t_n$.