
Math 117: Homework 6
Due Friday, February 23rd at 11:59pm

Questions followed by * are to be turned in. Questions without * are extra practice. At least one
extra practice question will appear on each exam.

Question 1*

Consider the sequences defined as follows:

an = (−1)n+1, bn = − 1

n
, cn = 2n.

(a) For each sequence, give an example of a monotone subsequence.

(b) For each sequence, give its set of subsequential limits. Justify your answer.

(c) For each sequence, give its lim inf and lim sup. Justify your answer.

(d) Which of the sequences converges? Diverges to +∞? Diverges to −∞? (You do not need to
justify your answer.)

(e) Which of the sequences is bounded? (You do not need to justify your answer.)

Question 2

(a) State the definition of convergence for a sequence sn to a limit s.

(b) State what it means for a sequence sn to not converge to a limit s by negating the definition
from part (a).

(c) Suppose that sn does not converge to s ∈ R. Prove that there exists ε > 0 and a subsequence
snk

so that |snk
− s| ≥ ε for all k.

Question 3*

One can show that the set of rational numbers Q can be listed as a sequence rn. The exact procedure
is a little tedious, but you can get an idea of how it works by considering the below diagram from
the textbook. For example, r1 = 0, r2 = 1, r3 = 1/2, and so on. Note that some numbers, such as
−1, are included multiples times.

(a) For any ε > 0 and a ∈ R, show that the set {r ∈ Q : |r − a| < ε} contains infinitely many
elements. (Hint: Use denseness of the rationals.)

(b) Let rn be the sequence of rational numbers. Use part (a) to show that for any a ∈ R, there
exists a subsequence rnk

that converges to a. (Hint: Use part (a) to show that the set
{n ∈ N : |rn − a| < ε} is infinite.)

(c) Let rn be the sequence of rational numbers. Show that there exists a subsequence rnk
satisfying

limk→+∞ rnk
= +∞.
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2. Sequences70

Example 3
It can be shown that the set Q of rational numbers can be listed
as a sequence (rn), though it is tedious to specify an exact formula.
Figure 11.1 suggests such a listing [with repetitions] where r1 = 0,
r2 = 1, r3 = 1

2 , r4 = −1
2 , r5 = −1, r6 = −2, r7 = −1, etc. Readers

familiar with some set theory will recognize this assertion as “Q
is countable.” This sequence has an amazing property: given any
real number a there exists a subsequence (rnk

) of (rn) converging to
a. Since there are infinitely many rational numbers in every interval
(a−ϵ, a+ϵ) by Exercise 4.11, Theorem 11.2 shows that a subsequence
of (rn) converges to a.

Example 4
Suppose (sn) is a sequence of positive numbers such that inf{sn :
n ∈ N} = 0. The sequence (sn) need not converge or even be
bounded, but it has a subsequence converging monotonically to 0. By
Theorem 11.2, it suffices to show {n ∈ N : sn < ϵ} is infinite for each
ϵ > 0. Otherwise, this set would be finite for some ϵ0 > 0. If the set
is nonempty, then inf{sn : n ∈ N} = min{sn : sn < ϵ0} > 0, because
each sn is positive and the set {sn : sn < ϵ0} is finite. This contra-
dicts our assumption inf{sn : n ∈ N} = 0. If the set is empty, then
inf{sn : n ∈ N} ≥ ϵ0 > 0, again contrary to our assumption.

The next theorem is almost obvious.

FIGURE 11.1

Background on Infinite Series

In calculus, you encountered infinite series of the form

∞∑
k=1

ak = a1 + a2 + a3 + . . . .

In fact, these are just limits of sequences. In particular, if we define the sequence

sn =
n∑

k=1

ak = a1 + a2 + · · ·+ an

to be the sum of the first n terms of the series, then we define the value of the infinite series to be

∞∑
k=1

ak = lim
n→+∞

sn.

DEFINITION 1. Given a series
∑∞

k=1 ak, define the sequence sn =
∑n

k=1 ak. Then the series∑∞
k=1 ak converges to a number L if and only if the sequence sn converges to L. Likewise, the series

diverges to +∞ or −∞ if and only if the sequence sn diverges to +∞ or −∞.

Question 4* (Cauchy criterion)

Recall that a sequence sn is a Cauchy sequence if

for all ε > 0, there exists N ∈ R so that n,m > N ensures |sn − sm| < ε.

(a) Prove that the following is an equivalent definition of a Cauchy sequence:

sn is a Cauchy sequence if, for all ε > 0, there exists N ∈ R so that n > m > N ensures |sn−sm| < ε.

(b) Prove the following theorem about series, known as the Cauchy criterion.

THEOREM 1 (Cauchy Criterion). A series
∑∞

k=1 ak is convergent if and only if

for all ε > 0 there exists N ∈ R so that n > m > N ensures

∣∣∣∣∣
n∑

k=m+1

ak

∣∣∣∣∣ < ε.
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(c) Now use Theorem 1 to prove the following corollary:

COROLLARY 2. If a series
∑∞

k=1 ak is convergent, then limk→+∞ ak = 0.

(Hint: take n = m+ 1 in the theorem from part (a).)

Question 5

(a) Prove the following by induction: for a 6= 1,

m−1∑
i=0

ai = 1 + a+ a2 + · · ·+ am−1 =
1− am
1− a .

(b) Use part (a) to show that

m−1∑
i=n

ai = an + an+1 + · · ·+ am−2 + am−1 =
an − am

1− a .

( Hint:
∑m−1

i=n ai =
∑m−1

i=0 ai −∑n−1
i=0 a

i.)

(c) Recall from HW2 Q3 that∣∣∣∣∣
n∑

i=1

ai

∣∣∣∣∣ = |a1 + a2 + · · ·+ an| ≤ |a1|+ |a2|+ · · ·+ |an| =
n∑

i=1

|ai|.

Let sn be a sequence such that |sn+1 − sn| ≤ 4−n for all n ∈ N. Use part (b) and the above
inequality to prove sn is a Cauchy sequence.

(d) Does the sequence from part (c) converge? Justify your answer.

Question 6* (decimal expansions)

In this problem you will show that any number that can be represented as a nonnegative decimal
expansion can be thought of as the limit of a bounded increasing sequence of real numbers. Since
all bounded monotone sequences converge, this guarantees that any decimal expansion you can
imagine represents (converges to) a real number.

Suppose we are given a decimal expansion K.d1d2d3d4 . . . , where K is a nonnegative integer and
each dj ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Let

sn = K +
d1
101

+
d2
102

+ · · ·+ dn
10n

.

(a) Show sn is an increasing sequence. (This is almost obvious. Your proof should be short.)

(b) Use the result from Q5(a) to prove that 9
10 + 9

102
+ · · ·+ 9

10n = 1− 1
10n .

(c) Use part (b) to prove that sn is a bounded sequence.

(d) Since 0.9̄ = 0.999 . . . and 1 are both decimal expansions, by what you have shown, they both
correspond to a real number. Use the hint from part (b) to show that they actually correspond
to the same real number.
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Question 7 (geometric series)

On previous homework/practice quizzes you proved the following results:

lim
n→+∞

rn =


0 if |r| < 1

1 if |r| = 1

+∞ if r > 1

does not exist if r ≤ −1,

and

for r 6= 1,

n∑
k=1

rk =
1− rn+1

1− r .

(a) Prove that for |r| < 1,
∑∞

k=1 r
k = 1

1−r .

(b) Prove that for |r| ≥ 1,
∑∞

k=1 r
k does not converge. (Hint: Use Corollary 2 from Q4.)

Question 8*

Let sn be a sequence of nonnegative numbers, and for each n define σn = 1
n(s1 + s2 + · · ·+ sn).

(a) Show lim inf sn ≤ lim inf σn ≤ lim supσn ≤ lim sup sn.
(Hint: For the first inequality, show that M > N implies

inf{σn : n > M} ≥
(

1− N

M

)
inf{sn : n > N}.

For the last inequality, show first that M > N implies

sup{σn : n > M} ≤ 1

M
(s1 + s2 + · · ·+ sN ) + sup{sn : n > N}.)

(b) Show that if lim sn exists, then limσn exists and limσn = lim sn.

(c) Give an example for which limσn exists but lim sn does not exist.

Question 9

Suppose sn and tn are bounded sequences.

(a) Prove that lim sup sn + tn ≤ lim sup sn + lim sup tn.

(b) Give an examples of bounded sequences sn and tn for which lim sup sn + tn < lim sup sn +
lim sup tn.
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