Homework 6 Solutions

\n

① Kater Caire, 2023	
① Seguence	Monotone subsequence
⑦ Seequence	1,1,1,---)
⑤ $\frac{1}{2}$	2n
② $\frac{1}{2}$	2n
③ $\frac{1}{2}$	2n
③ $\frac{1}{2}$	3n
②	

Fix $t \in \mathbb{R} \setminus \{-1, 1\}$. Let $\varepsilon = \min \{ |t - 1|, |t - (-1)| \}$. Then $\varepsilon > 0$, and $\{n : |(-1)^n - t| < \varepsilon \} = \emptyset$.
By the main subsequences theorem, this implies that t is not a subsequential limit.

For ^E ⁿ Ian the is infinite only if ^t ¹ or ¹ Thus1a arethe only possible subsequential limits bn 03 If ^a seguenie has ^a Cn ⁰ limit then all subsegree have the same limit

he same measure may be a strong of the same measure of the same measure of the same measure of the same measure

 \bigcirc $\int_{0}^{1} \frac{1}{2} \cos^2 \theta \, dx = \int_{0}^{1} \frac{1}{2} \cos^2 \theta \, dx$ $\frac{100}{100}$ an = $\frac{100}{100}$ as inflamin >N3 = $\frac{100}{100}$ a -1 = -1

Since the limits of bn, cn
exist their linsurs and li exist, their linsup's and liming's must coincide with their limits. Thus,

 $linspace_{p} = lin_{p} = 0$ $limsup$ $cn = linnup$
 $n-sdcn = +\infty$

an does not converge, since its set of subsequential limits contains more than one element It also does not diverge to $\frac{+}{-\infty}$, since it is
bounded. bounded

b
\nn diverges to to
\ncn diverges to to
\n
$$
\frac{1}{2}
$$

\n $\frac{1}{2}$
\

Cn is not bounded, since it diverges

^A sequence Sn σ to ^a limits if for all 620 , \exists N s.t. n $>$ N ensures $|sn\frac{1}{5}|$ $<$

A sequence sn doesn't converge to a limits if f E $>$ O s.t. \forall N , Jn N s.t. $|Sn$ $S|$ \ge \forall

We construct such a subsequence Taking $N = 1$ in part (b), $\pm m_1 > 1$ s.
 $|S_m - S| \geq \epsilon$. Suppose we have choser IS_{n_1} -SNDE. Suppose we have chosen m_{k-1} . Taking $N-n_{k-1}$ in part $1 m_k > n_{k-1}$ S.t. $|S_{n_k} - S| \geq 3$

Therefore there exists ^a subsequence Sn_K S.t. $|Sn_k-S| \leq E$ $\forall k$

We must show that for all E>0
an I a ER, S=3r EQ: a-2<r <a+2} is an u a ϵ IR, s - ϵ α : a - ϵ < r < a + ϵ j is infinite. We proceed by induction
By denseness of Q in TR, 4 pure exis By denseness of B in \mathbb{R} , there exists
 $r \searrow e$ by g_B that $a \cdot e \le r \le a + e$ so $r \in S$ r_1Ue be so that a - ϵ < r_1 < a + ϵ , so r_1 ϵ S. By denseness of Win IK, there exists
rz E W su that a-E <rz <rz <a+E, so rz $z \in \omega$ so that $a - z \le r_2 \le r_1 \le a + \varepsilon$ so $z \in S$ Assume we have picked ^k distinct elements $r_{11}r_{1}...r_{k}$ ES satisfying

 By denseness of Q in R , there exists $rk_{1}\in\mathbb{Q}$ so that α -E<r kr_{k} <r kr_{k} <...<r so reties. Thus S has infinitely \bigcup elements (b) Since $\{re\}$ is trale $\{se\}$ contains is the Gegrence infinitely many elements and m is the sequence of rational is infinite for all E 20. 15y the main subsequences theorem, this ensures that there is ^a subsequence ink that to a.

Since rn is unbounded above the main subsequences theorem ensures that there is ^a subsequence that diverges to to

 $\overline{4}$

 α suppose S_n is a Lauchy sequence, according to our definition from class. Fix 220 . Then there exists N's.t. n,m N ensures /sn-sml<E. In particular, if n m M, we have Isn-sml<8.

Now, Suppose sn is a Cauchy sequence, according t_0 the new definition. Fix 200 Then \exists N s.t. K 2PM ensures ISK-Sek E. Suppose n, m?N. If $n=m$, then $|s_n-s_m|=o$ < ε . If $n>m$, take $k=n_{1}$ $l=m$ to see Isn-smke. Lastly, it n^2m , take k=m, l=n to see $|S_n - \xi_m| < \varepsilon$.

LE, ax is convergent \mathbb{Q} n $Sm = \frac{E}{\kappa_{rel}}$ ar converges Sn is Cauchy A VE70, 7 NER SO that nPM7N $lmswes$ \sqrt{sm} $\frac{sm}{l} < \epsilon$ $\bigoplus_{Y\in 70} \frac{\sum_{k=1}^{n} a_k - \sum_{k=1}^{m} a_k}{N^{\text{eff}}} = \sum_{k=m+1}^{n} a_k$ ensuries $|\frac{1}{2}ar| < \epsilon$ E) Support ÉLAK is convengent. WTS $\lim_{\leftarrow} a_k = 0$. Fix $\epsilon > 0$. By part (b), JN s.t. n>m>N implies
LE arlee. In particular, JN s.t.
m>N and n=m+1 implies lanke, so $|a_n - 0| < \epsilon$. Thus $|i n a_k \approx 0$.

(a) Base case: When $m=0$, $l=\frac{1-\alpha}{1-\alpha}$ Inductive step: Suppose Itat, tam-1-am $\frac{\Gamma_{n}^{2}C_{n}}{1-\alpha}=\frac{1+a^{n}}{1-a}e^{nC_{n}^{2}C_{n}^{2}C_{n}^{2}}=\frac{1-a^{n}}{1-a}e^{nC_{n}^{2}C_{n}^{2}C_{n}^{2}}=\frac{1-a^{n}}{1-a}e^{nC_{n}^{2}C_{n}^{2}C_{n}^{2}}=\frac{1-a^{n+1}}{1-a},$ which completes the ploof. (b) By the hint and part (a), $\sum_{i=n}^{m-1} a^{i} = \sum_{i=0}^{m-1} a^{i} - \sum_{i=0}^{n-1} a^{i} = \frac{1-a^{m}}{1-a} = \frac{a^{m}-a^{m}}{1-a}$ ONote that, for m?n, $|Sm-Snl=|Sm-Sm-l+Sm-l-Sm-l+...+Sn+l-Snl$ $C_{3}S_{5}$ = $|S_{5}M-S_{5}M-1|$ + $|S_{5}M-1-S_{5}M-2|$ + $S_{5}N+1-S_{5}M$ (b) $\int_{0}^{2\pi} \frac{4}{9} e^{-\frac{1}{2} (m-1)} + 4^{-\frac{1}{2} (m-2)} + 4^{-\frac{1}{2} (m-2)} = \left(\frac{1}{4}\right)^{m} - \left(\frac{1}{4}\right)^{m}$ $= \frac{4}{3} (\frac{1}{4})^{n}$. Furthermore for all 200
 $\frac{4}{3}(\frac{1}{4})^n <$ 25 ($\frac{1}{4}$) $\frac{1}{4}$ ($\frac{1}{4}$) $\frac{32}{4}$ ($\frac{35}{4}$) $\frac{35}{4}$) ($\frac{32}{4}$) ($\frac{32}{4}$) ($\frac{32}{4}$) Let 270 . Define $N = \frac{\log(\frac{325}{4})}{\log(\frac{1}{4})}$. Then
m,n > N ensures $|s_m-s_n| < \epsilon$. Therefore Sn is Cauchy

Odes. The sequence sn converges
since all Cauchy sequences

(b) Taking $a=\frac{1}{10}$ in $QS(\alpha)$ gives $1 + \frac{1}{16} + \frac{1}{10^{2}} + \dots + \frac{1}{10^{n}} = \frac{|-(1/16))^{n+1}}{9/10}$
 \Leftrightarrow $G + \frac{q}{10} + \frac{q}{10^{2}} + \dots + \frac{q}{10^{n}} = |0 - (\frac{1}{10})^{n}$

O Since $sn = K + \frac{d_1}{10} + \frac{d_2}{10^2} + \frac{d_2}{10^n}$ and $di = 9$ for all $i=1, -, n, q$
 $sn=K+\frac{q}{\omega}+\frac{q}{\omega^{2}}+\frac{q}{\omega^{2}}=K+[-\frac{1}{\omega^{2}}=K+1]$ Therefore sn is bounded above. Since $snZO'$, it is also bounded below, hence bounded.

a) Let $sn = 99...9$. Then $sn = 1-\frac{1}{10^{n+1}}$.
Since $\lim_{n \to \infty} \frac{1}{10^n} = 0$, $\lim_{n \to \infty} \frac{1}{10^{n+1}} = \lim_{n \to \infty} \frac{1}{10^n} = 0$, $\frac{1}{10} = 0$, $\frac{1}{1$ ntimes

(1) Define
$$
sn = \frac{m}{k^{2}}r^{k}
$$
.
\n(a) $\frac{m}{k^{2}}r^{k} = \frac{lim}{n^{2}}s$ sn = $\frac{lim}{n \to \infty} \frac{1-r^{n+1}}{1-r} = \frac{1-0}{1-r} = \frac{1}{1-r}$.
\n(b) By the corollary, If $\frac{m}{k^{2}}r^{k}$ converges,
\n $+lim_{k \to \infty} \frac{lim}{k^{2}}r^{k} \neq 0$. Thus, if arc can
\nshow $\frac{lim}{k^{2}}r^{k}d$ even if $convenge$.
\n ± 1 $r > 1$, $lim_{k \to \infty} r^{k} = +\infty$ and if $r < -1$
\n $lim_{k \to \infty} r^{k}d$ odd not exist. Thus, if $ln(21)$,
\n $lim_{k \to \infty} r^{k} \neq 0$.
\n $\pm f = -1$, $lim_{k \to \infty} r^{k} = 1$ and
\nif $r = -1$, $lim_{k \to \infty} r^{k} \neq 0$.

8) First, note that limingson & linsupose We now show liming sn = liming on Note that if n>M>N $sn = \pi(s, ts_2 + s_n)$ $= \frac{1}{n}(s_1 + s_2 + ... + s_N + s_{N+1} + s_N + s_N)$ $S_{1}20$ $S_{2} = n151+52+...+5n+5n+1-1$
 $S_{1}20$ $S_{2} = n(S_{1}+...+S_{M}+...+S_{M})$
 $S_{N}20$ $S_{N}20$ $S_{N}20$
 $S_{N}20$ $S_{N}20$ since for image and there (250 (n-1)) $sin^2(1-\frac{13}{11})$ $sin^2(3\pi^2+13)$ elements in the sum Therefore (1-Min) {snin>N] is a
lower bonnd for the set 30min >M]. Hence informants=(1-7) informants. BM First suppose N is fixed. Since BM=(1-ti) bu for all M=N, sending
M->ta gives liming on=m->Sm=bn. Now, sending NStad gives
liming on = 1930s by = liming on,
which proves the first inequality. Now we show lingupon Elinsupsn

Note that it n M>N, $sn=\pi(s_1+s_2+...+s_N+s_N+...+s_N+...+s_N)$ $since for $12$$ $= \frac{1}{n}(s_1 + s_2 + ... + s_N) + \frac{1}{n}(s_N + t - t_{S_N} + s_N)$ Si-SUD SSNWW $= \frac{1}{n}(s_1 + s_2 + ... + s_N) + \frac{1}{n}(n-N)$ sup {snin 7/1} andfrere $arg(n-N)$ $f = \frac{1}{n} [S_1 + S_2 + ... + S_N] + Sup \{S_n : n > N\}$ elements in the second sum Thus sup { Sn: n > M } = H (sits= + sn) + sup { snikh} Sending Mates for finced N gives, Then sending NSN gives limsupon = 1900 = linsupsn, which completes the proof. (b) If lim sn exists, then
limsupsn = limingsn. Hence, by part (0, limoupon = limingon).
Therefore limon exists.

O Consider sn= (-1)ⁿ⁺¹ so lim sn docenit
exist. Then $sn=\frac{1}{2}n$ for n odd
(0) for n even,
so lim sn = 0.

(a) First, note that, for any NE/N, if
Ms is an upper bound for $\frac{8}{3}$ n: n > N3 and ME is an upper bound for {tn: n?NS, then Ms+Mt is an upper bound for {Sn+tn:n7N} Consequently, V NEIN,
(*) sup?sn+tn:n7N} = sup?sn:n7N}+sup?tn:n7N}

Recall that
limsup(snttn)= lim
n=20 Sup{snttn:n= N}

 $\limsup_{n\to\infty}sn=\lim_{n\to\infty}\frac{\sup\{s_{n}:n\geq N\}}{\sum\{n\}}$ $\begin{array}{l} \nlimsup_{n\to\infty} t_n = \lim_{n\to\infty} \sup_{s\in\mathbb{R}} \sum_{n=1}^{n} s_n \leq 1 \end{array}$

We have $\chi_N \le \psi_N + z_N$ for all $N \in \mathbb{N}$. Furthermore, since sn and tn are bounded sequences, so are xn, yu, Zn. Since bounded monotone sequences converage, the limit of sum is sum of limits:

$$
lim_{N\rightarrow\infty}y_{N}+lim_{N\rightarrow\infty}z_{N}=\lim_{N\rightarrow\infty}y_{N}+z_{N}
$$
\n
$$
lim_{N\rightarrow\infty}x_{N}.
$$
\nThis amplitude the proof.

(b) Let
$$
sn = (-1)^n
$$
, $tn = (-1)^{n+1}$. Then
sn+tn=0. Thus,

 $limsup_{n\rightarrow\infty}$ snttn⁼ $lim_{n\rightarrow\infty}$ snttn=0

 $\limsup_{n \to \infty}$ $S_n = \lim_{n \to \infty}$ $\sup_{n \to \infty} \{(-1)^n : n \ge n \} = \lim_{n \to \infty} |-1$

Since $0<2$, this gives the result.