Homework 7 Solutions KatyCraig ²⁰²³ ^t is ^a subsequential limit of Sn I there exists ^a subsequence Snk af Sn S.t Iso Snk ^t I If ^t is ^a real number this follows since limitofproduct isproduct of limit If t t ^d this followsfrom resultfrom there exists ^a subsequence Snk af Sn s.t class Yao Sme ^t I there exists ^a subsequence tnk of Sn sit Kant net I t is ^a subseguential limit of Sn

(2) First, suppose
$$
\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = s \in \mathbb{R}
$$
.
\nFix £>0. Then exists Na, Nc s.t. n³Na
\nensure\non $\lim_{n\to\infty} 1$ am-s1< ε and n³Nc ensures $lcn-s1<\varepsilon$.
\nFurthermore, there exists N s.t. n³N ensures an ε bm- ε bm-

Next, suppose $\lim_{h \to \infty} a_h = +\infty$. Fix $m > 0$. There exists $N_{a} s.t. n$ >Na ensured an $2M$. There exists N s.t. n >N ensures an 4 bn. Let $N = max\{Na, N\}$. Then $n > N$ ensures bn M. This shows $\lim_{n\to\infty}bn = m$.

 $Finally, suppose $n^2\omega cn = \infty$. Then
 $f(n) = \frac{1}{2}c^2$$ $\epsilon_n \leq -b_n \leq -a_n$ for all but finitely many n
col $\lim_{n \to \infty} \epsilon_n = a$ ∞ R ∞ the organizary ϵ_n and $\begin{array}{ll} \n\pi & \pi \rightarrow \infty \\ \n\pi & \pi \rightarrow \infty \n\end{array}$ on $\pi = \pi \rightarrow \infty$. Thus $\bigcup_{n \rightarrow \infty} \pi = \pi \rightarrow \infty$. $lim_{n\to\infty}$ bn $= +\infty$ Thus $lim_{n\to\infty}$ bn=- ∞

It remains to show no other real number on $\pm \infty$ belongs to \le

Neither too non-o belong to S, since
the peculiaries is bounded the sequence is bounded

Suppose $a \in S$ for some $a \in R$. By the main subsequences theorem it such the to

show
$$
\exists
$$
 \$250
\nso that $|a-sn| \ge |a-1| =:$ for all n .
\n
$$
\boxed{1}
$$
\n
$$
\boxed{a>1}
$$
\n
$$
1
$$
\n
$$
\boxed{1}
$$
\n
$$
\boxed{a>2}
$$
\n
$$
1
$$
\n
$$
\boxed{1}
$$
\n
$$
\boxed{a>2}
$$
\n
$$
1
$$
\n
$$
\boxed{1}
$$
\n
$$
\boxed{10}
$$
\

Sn is a bounded sequence it I ML/U
C + Ic I < M V ane INI $S.t.$ $|S_{n}|$ < ML \forall n ⁰ \in / Assume for the sake of contradiction Y hat f ke N s.t. $5k^2 \sum n^3$ Sn $5n >$ has finitely many elements Case 1: BK has zero elements Then $sn \leq s - \frac{1}{k}$ for all $n \in \mathbb{N}$
This contridicts the fact that This contradicts the fact that s is the least upper bound Case2: KK has a nonzero number of elements. Then ^OBK has a m umum M_k = m ax B_k . Since $sn < s$ for all $n,$ $Mk < s$. Also, note that if snE Bx, then $sn \leq s - \frac{1}{K} \leq M_{k}$. Thus Mkis an upper bound for Esnin ENS Since Mr <s, this contradicts that ^s was the least upper bound Therefore, Bx has infinitely many
elements for all ke N.

 E Fix E O. Choose keIN so that $\frac{1}{K} < \epsilon$. Then \S n: Isn-sl< $\mathcal{E} \subseteq \mathcal{E}$ n: Isn-sl< $\frac{1}{K}$ $n : S^{-\frac{1}{K}}$ sn st since s_n s $\forall n \stackrel{\iota}{=} \{n : s - \frac{1}{k} \leq s_n\}$

Furthermore $\{x : s - \frac{1}{k} < s_n\}$ = $|B_k|$, since each element sn in BK corresponds to at least one index n in '{n's-te<sn}.

 B_{ν} part (b), we obtain $\sum_{n=1}^{\infty}$ S_{ν} isn-skey) = to Thus, by the main subsequences
theorem, there is a subsequence of Sn
converging to s. converging to ^s

Define sn= $\frac{1}{n}$. Then s=sup?sn:ne/N]: but since m s sn = 0, all subsequences of Sn converge to O

LY Snk is bounded, by Bolgano
Neierstrass Snymust have a con Weierstrass, Snk must have a convergent subsequence snke. Since snke is also a subsequence of Sn, Sn has a convergent subsequence.

 b

Suppose IsnI does not diverge to too. Then \exists M > 0 s.t. VN, \exists n > N for which Isn = M. Since $|sm|^{2}O$ for all $m \in \mathbb{N}_1$ this implies there exist infinitely many nEIN for which
Oslan Ism Cooseesenty there exists OE Isn EM Consequently there exists a subsequence sn_k for which $O^{\epsilon}ls_{n_k}$ lem ^V KEIN Therefore Snk is ^a bounded sequence, so by part (2), sn must have a convergent subsequence.

LS limsn⁼S, then all subsequences of Sn
UBO converge to S. Hence every also converge to s. Hence subsequence $s_{n_{k}}$ has a further 0 Subsequence $S_{n_{k_{\ell}}} = S_{n_{k}}$ that converges to s

Osuppose limsn#s, Then,
JEZOS.t. VN, FRZNS.t. Isn-5128 First, taking N=1, we have \exists n1 >1 s.t. $|S_{n_1^-} s| \geq 8$. Suppose we have chosen m_{k-1} . Taking "N= n_{k-1} , we see that
 $\exists m_k > n_{k-1}$ s.t. $|s_{n_k-5}| \ge \epsilon$. Therefore there exists a subsequence Sn_{K} S_{K} . $|Sn_{K}-S| \geq 2$ $\forall k.$ Since $s_{n_{k}}$ is always at least distance & from
 s_{1} no further subsequence of $s_{n_{k}}$ can
converge to s.

1) If Σ_{ax} =ta, then $S_n = \Sigma_{ax}$ diverges to ta. Since O Ear Ebr, In: Eibr ZSn. The result
then follows from the generalized

Define Sn EE ak th Ee bk Note that our hypotheses ensure Sn converges to HER and tn converges to Be R Ehaktbk Ling sniff Yim is sum of limit no Sn this tn A B IT can Info Csn ^c most CA Since Ianto fkf IN SntFSntlantil Sn Thus Sn is monotone so it must either converge or diverge to to Therefore EElakh either converges or diverges to to Suppose Eiland is convergent so it satisfies the Cauchy criterion We will show Etan is convergent by showing it satisfies the Cauchy criterion Fix ^E ⁰ ^F NS.t mom ^N implies

$$
|\sum_{k=m+1}^{n}|a_{k}|<\varepsilon.
$$

Since $|\sum_{k=m+1}^{n}a_{k}| \leq |\sum_{k=m+1}^{n}|a_{k}|$, we have

that n>m=N implies

$$
|\sum_{k=m+1}^{n} a_k| < \epsilon
$$
.
Thus, $\sum_{k=1}^{\infty} a_k$ satisfies the (auchy criterion.)