MATH 117: HOMEWORK 8

Due Sunday, March 17th at 11:59pm

Questions followed by * are to be turned in. Questions without * are extra practice. At least one extra practice question will appear on each exam.

Question 1*

Let $f(x) = \sqrt{2+2x}$ and $g(x) = e^x$.

- (a) Give the domains of f + g, fg, $f \circ g$, and $g \circ f$.
- (b) Are the functions $f \circ g$ and $g \circ f$ equal?
- (c) Are the expressions $f \circ g(-2)$ and $g \circ f(-2)$ meaningful?

Question 2*

- (a) Prove that, for any $c \in \mathbb{R}$, the constant function f(x) = c is continuous. Prove that, for any $k \in \mathbb{R}$, the function g(x) = kx is continuous.
- (b) Consider the function

$$f(x) = \begin{cases} 1/x & \text{ for } x \neq 0\\ 0 & \text{ for } x = 0. \end{cases}$$

Prove that f(x) is not continuous.

Question 3

Prove that the following functions are discontinuous at $x_0 = 0$:

(a) $f(x) = \begin{cases} x+1 & \text{if } x > 0 \\ x-1 & \text{if } x \le 0 \end{cases}$	
(b) $g(x) = \begin{cases} \cos\left(\frac{\pi}{x}\right) & \text{ for } x \neq 0\\ 1 & \text{ for } x = 0 \end{cases}$	
(c) $\operatorname{sgn}(x) = \begin{cases} \frac{x}{ x } & \text{for } x \neq 0\\ 0 & \text{for } x = 0 \end{cases}$	(This function is known as the <i>signum function</i> .)

Question 4^*

Let f be a real-valued function whose domain is a subset of \mathbb{R} . Prove that f is continuous at x_0 in dom(f) if and only if for every sequence x_n in dom(f) \ { x_0 } that converges to x_0 , we have $\lim_{n\to\infty} f(x_n) = f(x_0)$.

(Hint: To show that if f satisfies the above criteria then it is continuous at x_0 , proceed by contradiction. Using HW6, Q2(c), explain why there exists $\epsilon > 0$ and a subsequence x_{n_k} so that $|f(x_{n_k}) - f(x_0)| \ge \epsilon \ \forall k \in \mathbb{N}$, while $\lim_{k \to +\infty} x_{n_k} = x_0$. Explain why this is a contradiction.)

Question 5

Let f be a real-valued function with dom $(f) \subseteq \mathbb{R}$. Prove that the following are equivalent:

- (i) f is continuous at x_0
- (ii) for every monotonic sequence x_n in dom(f) that converges to x_0 , we have $\lim f(x_n) = f(x_0)$.

(Hint: To prove that (ii) implies (i), proceed by contradiction and use HW6, Q2(c).)

Question 6^*

You may assume that the following functions are continuous on their domains: $\sin(x)$, $\cos(x)$, e^x , 2^x , $\log(x)$ for x > 0, and x^p for x > 0, where p is any real number. (We use $\log(x)$ to denote the natural logarithm.) You may also assume that the constant function f(x) = c is continuous for any $c \in \mathbb{R}$.

For the following functions, state the domain of each function and prove that the function is continuous on its domain.

(a)
$$f(x) = \cos(1 - (\log(x))^2)$$

(b)
$$g(x) = \frac{1}{x^2} \cos\left(\frac{1}{1-x}\right)$$
 for $x \neq 0, 1$

Question 7

- (a) Prove that f(x) = |x| is a continuous function on \mathbb{R} . (Hint: use the reverse triangle inquality.)
- (b) Use part (b) and the theorem about composition of continuous functions to prove that if g is continuous at $x_0 \in \text{dom}(g)$, then |g| is continuous at x_0 .

Question 8^*

Prove that $xe^x = 2$ for some $x \in (0, 1)$. You may assume without proof that the functions f(x) = x and $g(x) = e^x$ are continuous.

Note: this problem is an application of the intermediate value theorem, which you will learn about in Thursday's lecture.