However, 7 solutions

\nObkety, Craig, 2023

\n(1)
$$
\odot
$$
 dom(f+q) = [1,1\infty), dom(fq) = [1,1\infty), dom(g-1) = [-1,1\infty), dom(g-1) = [-1,1\infty)

\n(b) No. $f \circ g(x) = \sqrt{2+2}e^x \neq e^{\sqrt{2+2}x} = g \circ f(x)$

\n(c) $f \circ g(-2) = \sqrt{2+2}/e^z$

\n(d) $g \circ f(-2)$ is not meaningful since -2.60cmf

(a)
$$
E_{ix} \times_{c} e/R
$$
 and a sequence x_{n}
\nconverging to x_{0} . The must show
\n $f(x_{n}) = c$ for all $n \in N$ and $f(x_{0}) = c$,
\n $f(x_{n}) = c$ for all $n \in N$ and $f(x_{0}) = c$,
\nthis is trivially true.
\n(b) Take $x_{0} = 0$ and $x_{n} = \frac{1}{n}$. Then
\n $\lim_{n \to \infty} x_{n} = x_{0}$ but $\lim_{n \to \infty} f(x_{n}) = \lim_{n \to \infty} n = +\infty$
\n $\neq 0 = f(x_{0})$.

L

3) Define $\chi_{n}=\frac{1}{n}$, so χ_{n} lies in the
domain of all three functions and

(a) $lim_{n\to\infty}f(x_n) = lim_{n\to\infty}f(\frac{1}{n}) = lim_{n\to\infty} \frac{1}{n} + 1 = 1 \neq -1 = f(x_0)$

So f is not continuous.

O lim
doesn'texist, so it does not equal $f(x_0) = 1$
Hence, f is not continuous.

(4) Suppose
$$
A
$$
 is cts at x_0 . By $depth$ of ct_1 ,
\nfor every sequence $Xn=dom(t)$ s.t. $h=cos Xn=x_0$
\nfor $l=1$, $f(x_0)=f(x_0)$. Since
\n $(dom(f))\{x_0\} \subseteq dom(f)$, for every sequence
\n $x_n+dom(f))\{x_0\} \subseteq t$. $h=os x_n=x_0$ by have
\n $lim_{h\to\infty} f(x_n)=f(x_0)$.

Now, suppose that for every sequence $\chi_{n}\epsilon$ dom $(f)\$ $\chi_{s}\zeta$ s.t. κs xn= χ_{o} we have $h_{\text{max}} + (x_n) = f(x_0)$. Let yn be ar $\lim_{h \to \infty}$ $u_n = \sqrt{2}$ n dom (f) s.t $lim_{h\to\infty} y_h = x_h$

We must show $lim_{n\to\infty} f'(yn) = f(x_0)$. Assume for the sake of contradiction, that
Flyn) does not converge to flxo). Flynt does not converge to the

 B_{ν} HWG, Q2(c), \exists 2>0 and a
shorequence $f(u_{n})$ such that $subsequence$ $t(\mu_{n_{k}})$ such that Iflyn κ)ⁿ-that Is & V kell κ)Note that this is only possible if y_{nk} \neq xotor all
< EIN. However this means KEIN. HOWEVER This Mean y_{n_k} ϵ dom(+) $3x_05$, and since y_{n_k} is a subsequence of the convergent $seqmax$ U $yn₁$ U $lim_k3\infty$ $yn_k=x_o$

 By assumption (x) , this implies
 $f(yn) = f(x_0)$. This contrad its contradicts (the flat of the flat This contradicts (the

 $(5)(i) \Rightarrow (ii)$ If is continuous at x_{0} , then to all sequences in in domit) that converge \overline{f}_{\emptyset} \propto \overline{f}_{\emptyset} we have $\lim_{n\rightarrow\infty}f(x_{n})=f(x_{0})$, so in particular this also holds for monotonic sequences $\tau(i) \Rightarrow \tau(i)$ Suppose x_n is a sequence in domit) that β schir $convexes$ to x_0 for which $\sum_{n=1}^{\infty} F_n(x)$ Isy Homework 6, Q2 (c), there exists
EDO and a subsequence χ_{n_k} so the ^E ⁰ and ^a subsequence Xn ^k so that $|f(x_{n_k})-f(x_0)|$ ze for all k. Since $\lim_{n\to\infty}x_n=x_0$, we also have $\lim_{k\to\infty}x_{n_k}=x_0$. Because any seguence has a monotone subsequence) there is a further subsequence, there is a further subsequence Xnke that is monotone and Usatisties $lim_{k\to\infty} \chi_{n_{k_e}} = \chi_0$. However $If(x_{n_{k}})-f(x_{0})| \geq \epsilon$ for all l . Hence $\lim_{k\to\infty} f(x_{n_{k_\alpha}}) \neq f(x_0)$, so (ii) fails

6) Donr(f) = (0, +
$$
\infty
$$
).
\nLet f₁(x) = log(x), f₂(x) = x², f₃(x) = -1,
\nf₄(x) = 1, and f₅(x) = (cos(x). All of
\nHness are continuous on their
\ndomains. Hence, so are the following
\nfunctions.
\nf₂ of₁(x) = log(x)²
\n f_3 (x) $f_2 \cdot f_1(x) = log(x)^2$
\n $f_4(x) + f_5(x)$ | $f_2 \cdot f_1(x) = -log(x)^2$
\n f_5 | f_4 (x) + f_5 (x) | $f_2 \cdot f_1(x) = 1 - log(x)^2$
\n f_5 | f_4 (x) + f_5 (x) | $f_2 \cdot f_1(x) = f_5$ (x)
\nDo $Dom(g) = [R \setminus \{0, 1\}]$
\nLet f₁(x) = x, f₂(x) = -1, f₃(x) = 1
\n f_4 (x) = cos(x), f₅(x) = $\frac{1}{x}$. All of these
\nfunctions are continuous on their
\nHence, so are the following function
\n
$$
\begin{cases} f_2(x) |f_1(x)| = -x \\ f_3(x) + (f_2(x) |f_1(x)|) = 1-x \\ f_3(x) + (f_2(x) |f_1(x)|) = 1-x \\ f_3(x) + (f_3(x) + (f_2(x) |f_1(x)|) = 1-x \\ f_5(x) + (f_4(x) |f_1(x)|) = 1-x \\ f_5(x) + (f_4(x) |f_2(x)|) = 1-x \end{cases}
$$

Fix χ_{o} elk. Let χ_{n} be a $\int_{\mathcal{A}}$ converging to xo. Then, by the
Reverse Oriangle Inequality, Reverse Triangle Inequality $\vert \chi_n\vert$ - $\vert \chi_o\vert \vert \leq \chi_n - \chi_o$

 $Fix 870.$ Since $lim_{n\to\infty}xn=x_{s}$, \exists Ns.t. $n\ge N$ $ensures |x_n-x_o| < \epsilon$. Thus n?N $enswes$ $|1\chi n| - |x_0|| < \epsilon$. This shows $\lim_{n \to \infty} |\chi_n| = |x_0|$.

Since x_n and x_n were arbitrary, this shows f is continuous

By Thm, the composition
of continuous functions of continuous functions is continuous Ll of IK, 1+ g
hunction at note is a continuous function at rollomigl, then
If each is continually at x If $q = |q|$ is continuous at χ_{0} .

8) Since the product of continuous
functions is continuous,
Un (x) = xe x 15 continuous. Since $h(0)=0$ and $h(1)=e>2$,
the IVT ensures $\exists x \in (0,1)$ So that $h(x)=2$.