Lecture 10 KatyCraig ²⁰²⁴ Defflauchy sequence): A sequence sn 15 a
Cauche can maarit Cauchy sequence \mathbf{f} for all 890 , there exists NER s.t. m,n N ensures lsn sml 2 $5\tilde{\gamma}$ $\int \frac{1}{2}$ so it is in the solution of \int so it is in the solution of \int so it is in the solution of \int r $11 - 20$ n N How do Cauchy sequences fit in with the types of sequences we already

demma: Convergent sequences are Lauchy sequences

Pf: Suppose sn is a convergent sequence, $Sing$ ℓ $lim_{n\geq0}$ sn = s , \exists N s . t . n $>$ N ensures $|sn$ - $s|$ \leq $\frac{s}{2}$. Thus, for m,n \geq N , we have

 $|S_{n} - S_{m}| = |S_{n} - S_{s} - S_{m}| \le |S_{n} - S| + |S_{m} - S| \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$. Fadd and subtract Diney

Since 220 was arbitrary, Sn is Cauchy.
\nJamma: Cauchy sequences are bounded.
\nThe proof is similar to the proof that
\nconvorgent sequences are bounded.
\nRemark: Recall the reverse triangle inequality: for a self,
\n
$$
||a|-|b|| \le |a-b|
$$

\nSince $x \in |x|$ $\forall x \in \mathbb{R}$, we have $|a|-|b| \le |a-b|$.

B1: het 2=2. Since sn is Cauchy, J N s.t.
m,n>N ensune Isn-sm1<2, which
implies by reverse triangle inequality
|sn1-|sm|<2
$$
\Leftrightarrow
$$
|sn|<|sm|+2.

In particular, if $n > N$, we have $|N|+|N|$, so $|S_{\text{min}}| \leq 2 + |S_{\text{min}}|$ Define W = max 2 + $|S_{\text{BH}}|$, $|S_{1}|$, $|S_{2}|$,..., $|S_{N}|$ Then we have $|Sn| \leq M$ for all neN \Box Thus, Sn is a bounded sequence

MAJOR THEOREM #4 Ihm: A sequence is convergent if it is Lauchy Here you must know Here you must know what the limit is and that elts of sequence
show elts of sequence "bunchap". (Don't need
get close to it. to know what they to know what they are bunching up around!) <u>Remark:</u> \leq \circ for all but finitely many n
Limit of sn exists, than $\lim_{n\to\infty} s_n$ and the limit of sn exists, than $\lim_{n \to \infty} s_n^0 \leq b$. \bullet If asb+E forall $\varepsilon > 0$, then a ϵ b.

Die already proved that convergent sequences are cauchy sequences; so it remains to show that Cauchy sequences converge.

Suppose Sn is Lauchy. By theorien from last time, it suffices to show timid son line Sn to conclude that $\lim_{n\to\infty}$ sn exists. Since we already showed Cauchy secretaires are bounded are bounded

be implossible for it would be implossible for $\lim_{n\to\infty} s_n$ to equal $+\infty$ or $-\infty$. Thus, the sequence must converge.

 $Fix E 20.$ Since Sn is Cauchy, J N $S.t.$ $n,m>N$ ensures $|Sn\rightarrow Sm|<\epsilon$ \Leftrightarrow Sm-E<Sn < Sm+E.

Thus, for
$$
m > N
$$
, we have
\n $a_N = sup \{sn : n > N\} \le sm + \epsilon \Leftrightarrow a_N - \epsilon \le sm.$

- Thus, for $m > N$, we have
 $a_{N} \varepsilon \leq^{\prime} m! \Sigma m : m > N \Sigma = 6$ a_{ρ} - $e \le$ " n_{ρ} is s_{m} : m > N s = b_{ρ}
- Since an is ^a and by is an increasing sequence
for all $k > N$,

$$
a_{k}-\epsilon a_{N}-\epsilon b_{N}\epsilon b_{K}
$$
.

By Rernank,
\n
$$
\lim_{n\to\infty} \frac{1}{2} \lim_{k\to\infty} a_k - \varepsilon \le b_k \le \lim_{k\to\infty} b_k = \lim_{n\to\infty} \frac{1}{2} \sin k
$$

\nThus, $\lim_{n\to\infty} \frac{1}{2} \sin k = \lim_{n\to\infty} \frac{1}{2} \sin k = 0$

